Suppr超能文献

采用主成分分析和人工神经网络对复杂的铜-铁硫化物的飞行时间二次离子质谱谱进行分类。

Classification of time-of-flight secondary ion mass spectrometry spectra from complex Cu-Fe sulphides by principal component analysis and artificial neural networks.

机构信息

Ian Wark Research Institute, University of South Australia, Mawson Lakes, South Australia 5095, Australia.

出版信息

Anal Chim Acta. 2013 Jan 8;759:21-7. doi: 10.1016/j.aca.2012.11.001. Epub 2012 Nov 9.

Abstract

Artificial neural network (ANN) and a hybrid principal component analysis-artificial neural network (PCA-ANN) classifiers have been successfully implemented for classification of static time-of-flight secondary ion mass spectrometry (ToF-SIMS) mass spectra collected from complex Cu-Fe sulphides (chalcopyrite, bornite, chalcocite and pyrite) at different flotation conditions. ANNs are very good pattern classifiers because of: their ability to learn and generalise patterns that are not linearly separable; their fault and noise tolerance capability; and high parallelism. In the first approach, fragments from the whole ToF-SIMS spectrum were used as input to the ANN, the model yielded high overall correct classification rates of 100% for feed samples, 88% for conditioned feed samples and 91% for Eh modified samples. In the second approach, the hybrid pattern classifier PCA-ANN was integrated. PCA is a very effective multivariate data analysis tool applied to enhance species features and reduce data dimensionality. Principal component (PC) scores which accounted for 95% of the raw spectral data variance, were used as input to the ANN, the model yielded high overall correct classification rates of 88% for conditioned feed samples and 95% for Eh modified samples.

摘要

人工神经网络 (ANN) 和混合主成分分析-人工神经网络 (PCA-ANN) 分类器已成功用于对在不同浮选条件下从复杂的铜-铁硫化物(黄铜矿、斑铜矿、辉铜矿和黄铁矿)采集的静态飞行时间二次离子质谱 (ToF-SIMS) 质谱进行分类。由于以下原因,神经网络是非常好的模式分类器:它们能够学习和推广无法线性分离的模式;它们具有容错和抗噪能力;以及具有高度的并行性。在第一种方法中,将整个 ToF-SIMS 光谱的片段用作 ANN 的输入,该模型对给料样品的总体正确分类率达到 100%,对条件给料样品的总体正确分类率达到 88%,对 Eh 改性样品的总体正确分类率达到 91%。在第二种方法中,集成了混合模式分类器 PCA-ANN。PCA 是一种非常有效的多元数据分析工具,用于增强物种特征和降低数据维度。占原始光谱数据方差 95%的主成分 (PC) 得分被用作 ANN 的输入,该模型对条件给料样品的总体正确分类率达到 88%,对 Eh 改性样品的总体正确分类率达到 95%。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验