Suppr超能文献

人工神经网络在食品分类中的应用。

Application of artificial neural network in food classification.

机构信息

Department of Computer Chemistry, Rzeszów University of Technology, 6 Powstanców Warszawy Ave., 35-041 Rzeszów, Poland.

出版信息

Anal Chim Acta. 2011 Oct 31;705(1-2):283-91. doi: 10.1016/j.aca.2011.06.033. Epub 2011 Jul 21.

Abstract

Artificial neural network (ANN) classifiers have been successfully implemented for various quality inspection and grading tasks of diverse food products. ANN are very good pattern classifiers because of their ability to learn patterns that are not linearly separable and concepts dealing with uncertainty, noise and random events. In this research, the ANN was used to build the classification model based on the relevant features of beer. Samples of the same brand of beer but with varying manufacturing dates, originating from miscellaneous manufacturing lots, have been represented in the multidimensional space by data vectors, which was an assembly of 12 features (% of alcohol, pH, % of CO(2) etc.). The classification has been performed for two subsets, the first that included samples of good quality beer and the other containing samples of unsatisfactory quality. ANN techniques allowed the discrimination between qualities of beer samples with up to 100% of correct classifications.

摘要

人工神经网络(ANN)分类器已成功应用于各种食品的质量检验和分级任务。由于其能够学习非线性可分的模式和处理不确定性、噪声和随机事件的概念,因此 ANN 是非常好的模式分类器。在这项研究中,基于啤酒的相关特征,使用 ANN 构建分类模型。通过数据向量在多维空间中表示同一品牌但生产日期不同、来自不同生产批次的啤酒样本,数据向量是由 12 个特征组成的(酒精含量、pH 值、CO2 含量等)。对两个子集进行分类,第一个子集包括质量好的啤酒样本,另一个子集包括质量差的啤酒样本。ANN 技术允许将啤酒样本的质量进行区分,正确率高达 100%。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验