Department of Materials, University of Oxford, Parks Road, Oxford OX1 3PH, UK.
Ultramicroscopy. 2013 Feb;125:1-9. doi: 10.1016/j.ultramic.2012.11.003. Epub 2012 Nov 23.
Recent advances using cross-correlation analysis of full resolution high quality electron backscatter diffraction (EBSD) patterns have provided a method for quantitatively mapping the stored dislocation density at high spatial resolution. Larger areas could be mapped with image binning or coarser step sizes. We have studied the effects of image binning and step size on the recovery of GND density. Our results suggest that: (i) the measured lower bound GND density noise floor broadly agrees with Wilkinson and Randman's 2009 prediction, where a decrease in step size or an increase in misorientation uncertainty increases the noise floor; (ii) increasing the step size results in a lower GND density being recovered as some dislocations are now considered as statistically stored dislocations (SSDs); (iii) in deformed samples the average GND density stays relatively constant as the degree of pattern binning is increased up to 8×8. Pattern binning thus provides a means of increasing the data acquisition and analysis rate without unduly degrading the data quality.
利用全分辨率高质量电子背散射衍射 (EBSD) 图谱的互相关分析的最新进展提供了一种以高空间分辨率定量映射存储位错密度的方法。通过图像分块或更大的步长可以映射更大的区域。我们研究了图像分块和步长对恢复晶界密度的影响。我们的结果表明:(i) 测量得到的低位错密度噪声下限与 Wilkinson 和 Randman 在 2009 年的预测大致相符,其中步长减小或位向不确定性增加都会增加噪声下限;(ii) 增大步长会导致恢复的位错密度降低,因为现在一些位错被认为是统计存储位错 (SSDs);(iii) 在变形样品中,随着图案分块程度增加到 8×8,平均晶界密度保持相对稳定。因此,图案分块提供了一种增加数据采集和分析速度的方法,而不会过度降低数据质量。