Wallis David, Hansen Lars N, Ben Britton T, Wilkinson Angus J
Department of Earth Sciences, University of Oxford, South Parks Road, Oxford, Oxfordshire, OX1 3AN, UK.
Department of Earth Sciences, University of Oxford, South Parks Road, Oxford, Oxfordshire, OX1 3AN, UK.
Ultramicroscopy. 2016 Sep;168:34-45. doi: 10.1016/j.ultramic.2016.06.002. Epub 2016 Jun 8.
Dislocations in geological minerals are fundamental to the creep processes that control large-scale geodynamic phenomena. However, techniques to quantify their densities, distributions, and types over critical subgrain to polycrystal length scales are limited. The recent advent of high-angular resolution electron backscatter diffraction (HR-EBSD), based on diffraction pattern cross-correlation, offers a powerful new approach that has been utilised to analyse dislocation densities in the materials sciences. In particular, HR-EBSD yields significantly better angular resolution (<0.01°) than conventional EBSD (~0.5°), allowing very low dislocation densities to be analysed. We develop the application of HR-EBSD to olivine, the dominant mineral in Earth's upper mantle by testing (1) different inversion methods for estimating geometrically necessary dislocation (GND) densities, (2) the sensitivity of the method under a range of data acquisition settings, and (3) the ability of the technique to resolve a variety of olivine dislocation structures. The relatively low crystal symmetry (orthorhombic) and few slip systems in olivine result in well constrained GND density estimates. The GND density noise floor is inversely proportional to map step size, such that datasets can be optimised for analysing either short wavelength, high density structures (e.g. subgrain boundaries) or long wavelength, low amplitude orientation gradients. Comparison to conventional images of decorated dislocations demonstrates that HR-EBSD can characterise the dislocation distribution and reveal additional structure not captured by the decoration technique. HR-EBSD therefore provides a highly effective method for analysing dislocations in olivine and determining their role in accommodating macroscopic deformation.
地质矿物中的位错是控制大规模地球动力学现象的蠕变过程的基础。然而,在关键的亚晶粒到多晶长度尺度上量化其密度、分布和类型的技术有限。基于衍射图案互相关的高角度分辨率电子背散射衍射(HR-EBSD)的最新出现,提供了一种强大的新方法,已被用于材料科学中分析位错密度。特别是,HR-EBSD产生的角度分辨率(<0.01°)比传统EBSD(~0.5°)显著更好,能够分析非常低的位错密度。我们通过测试(1)估计几何必要位错(GND)密度的不同反演方法,(2)在一系列数据采集设置下该方法的灵敏度,以及(3)该技术解析各种橄榄石位错结构的能力,来开发HR-EBSD在橄榄石中的应用。橄榄石相对较低的晶体对称性(正交晶系)和较少的滑移系导致GND密度估计受到良好约束。GND密度本底噪声与映射步长成反比,因此可以优化数据集以分析短波长、高密度结构(例如亚晶界)或长波长、低幅度取向梯度。与传统的位错装饰图像比较表明,HR-EBSD可以表征位错分布并揭示装饰技术未捕捉到的额外结构。因此,HR-EBSD为分析橄榄石中的位错并确定它们在适应宏观变形中的作用提供了一种非常有效的方法。