Whitehead Institute for Biomedical Research, Nine Cambridge Center, Cambridge, Massachusetts 02142, USA.
Nature. 2013 Jan 31;493(7434):679-83. doi: 10.1038/nature11745. Epub 2012 Dec 23.
The mechanistic target of rapamycin complex 1 (mTORC1) pathway regulates organismal growth in response to many environmental cues, including nutrients and growth factors. Cell-based studies showed that mTORC1 senses amino acids through the RagA-D family of GTPases (also known as RRAGA, B, C and D), but their importance in mammalian physiology is unknown. Here we generate knock-in mice that express a constitutively active form of RagA (RagA(GTP)) from its endogenous promoter. RagA(GTP/GTP) mice develop normally, but fail to survive postnatal day 1. When delivered by Caesarean section, fasted RagA(GTP/GTP) neonates die almost twice as rapidly as wild-type littermates. Within an hour of birth, wild-type neonates strongly inhibit mTORC1, which coincides with profound hypoglycaemia and a decrease in plasma amino-acid concentrations. In contrast, mTORC1 inhibition does not occur in RagA(GTP/GTP) neonates, despite identical reductions in blood nutrient amounts. With prolonged fasting, wild-type neonates recover their plasma glucose concentrations, but RagA(GTP/GTP) mice remain hypoglycaemic until death, despite using glycogen at a faster rate. The glucose homeostasis defect correlates with the inability of fasted RagA(GTP/GTP) neonates to trigger autophagy and produce amino acids for de novo glucose production. Because profound hypoglycaemia does not inhibit mTORC1 in RagA(GTP/GTP) neonates, we considered the possibility that the Rag pathway signals glucose as well as amino-acid sufficiency to mTORC1. Indeed, mTORC1 is resistant to glucose deprivation in RagA(GTP/GTP) fibroblasts, and glucose, like amino acids, controls its recruitment to the lysosomal surface, the site of mTORC1 activation. Thus, the Rag GTPases signal glucose and amino-acid concentrations to mTORC1, and have an unexpectedly key role in neonates in autophagy induction and thus nutrient homeostasis and viability.
雷帕霉素靶蛋白复合物 1(mTORC1)途径的机械靶标响应许多环境线索(包括营养物和生长因子)调节生物体生长。基于细胞的研究表明,mTORC1 通过 RagA-D 家族 GTPases(也称为 RRAGA、B、C 和 D)感知氨基酸,但它们在哺乳动物生理学中的重要性尚不清楚。在这里,我们生成了从其内源启动子表达组成型活性形式的 RagA(RagA(GTP)) 的基因敲入小鼠。RagA(GTP/GTP) 小鼠正常发育,但在出生后第 1 天无法存活。通过剖腹产分娩,禁食的 RagA(GTP/GTP) 新生儿的死亡率几乎是野生型同窝仔的两倍。在出生后 1 小时内,野生型新生儿强烈抑制 mTORC1,这与严重低血糖和血浆氨基酸浓度降低同时发生。相比之下,尽管血液营养物质的量相同,但 RagA(GTP/GTP) 新生儿不会发生 mTORC1 抑制。随着禁食时间的延长,野生型新生儿恢复其血浆葡萄糖浓度,但 RagA(GTP/GTP) 小鼠仍然处于低血糖状态,直至死亡,尽管以更快的速度利用糖原。葡萄糖稳态缺陷与禁食 RagA(GTP/GTP) 新生儿无法触发自噬并产生用于从头葡萄糖产生的氨基酸有关。由于严重的低血糖不会抑制 RagA(GTP/GTP) 新生儿中的 mTORC1,我们考虑了 Rag 途径将葡萄糖以及氨基酸充足性信号传递给 mTORC1 的可能性。事实上,mTORC1 在 RagA(GTP/GTP) 成纤维细胞中对葡萄糖剥夺具有抗性,并且葡萄糖(如氨基酸)控制其募集到溶酶体表面,这是 mTORC1 激活的部位。因此,Rag GTPases 将葡萄糖和氨基酸浓度信号传递给 mTORC1,并且在诱导自噬以及因此营养物稳态和活力方面,在新生儿中具有出乎意料的关键作用。