Suppr超能文献

Skp2介导的RagA泛素化通过招募GATOR1引发负反馈,以防止氨基酸依赖性mTORC1过度激活。

Skp2-Mediated RagA Ubiquitination Elicits a Negative Feedback to Prevent Amino-Acid-Dependent mTORC1 Hyperactivation by Recruiting GATOR1.

作者信息

Jin Guoxiang, Lee Szu-Wei, Zhang Xian, Cai Zhen, Gao Yuan, Chou Ping-Chieh, Rezaeian Abdol Hossein, Han Fei, Wang Chi-Yun, Yao Juo-Chin, Gong Zhaohui, Chan Chia-Hsin, Huang Chih-Yang, Tsai Fuu-Jen, Tsai Chang-Hai, Tu Shih-Hsin, Wu Chih-Hsiung, Sarbassov Dos D, Ho Yuan-Soon, Lin Hui-Kuan

机构信息

Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA.

Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; The University of Texas Graduate School of Biomedical Sciences at Houston, Houston, TX 77030, USA.

出版信息

Mol Cell. 2015 Jun 18;58(6):989-1000. doi: 10.1016/j.molcel.2015.05.010. Epub 2015 Jun 4.

Abstract

The regulation of RagA(GTP) is important for amino-acid-induced mTORC1 activation. Although GATOR1 complex has been identified as a negative regulator for mTORC1 by hydrolyzing RagA(GTP), how GATOR1 is recruited to RagA to attenuate mTORC1 signaling remains unclear. Moreover, how mTORC1 signaling is terminated upon amino acid stimulation is also unknown. We show that the recruitment of GATOR1 to RagA is induced by amino acids in an mTORC1-dependent manner. Skp2 E3 ligase drives K63-linked ubiquitination of RagA, which facilitates GATOR1 recruitment and RagA(GTP) hydrolysis, thereby providing a negative feedback loop to attenuate mTORC1 lysosomal recruitment and prevent mTORC1 hyperactivation. We further demonstrate that Skp2 promotes autophagy but inhibits cell size and cilia growth through RagA ubiquitination and mTORC1 inhibition. We thereby propose a negative feedback whereby Skp2-mediated RagA ubiquitination recruits GATOR1 to restrict mTORC1 signaling upon sustained amino acid stimulation, which serves a critical mechanism to maintain proper cellular functions.

摘要

RagA(GTP)的调节对于氨基酸诱导的mTORC1激活至关重要。尽管GATOR1复合物已被确定为通过水解RagA(GTP)来对mTORC1起负调节作用,但GATOR1如何被招募到RagA以减弱mTORC1信号传导仍不清楚。此外,在氨基酸刺激后mTORC1信号传导如何终止也尚不清楚。我们发现,GATOR1被招募到RagA是由氨基酸以mTORC1依赖性方式诱导的。Skp2 E3连接酶驱动RagA的K63连接的泛素化,这促进了GATOR1的招募和RagA(GTP)的水解,从而提供一个负反馈环以减弱mTORC1向溶酶体的招募并防止mTORC1过度激活。我们进一步证明,Skp2通过RagA泛素化和mTORC1抑制促进自噬,但抑制细胞大小和纤毛生长。因此,我们提出一种负反馈机制,即Skp2介导的RagA泛素化在持续的氨基酸刺激下招募GATOR1以限制mTORC1信号传导,这是维持适当细胞功能的关键机制。

相似文献

2
The ubiquitination of rag A GTPase by RNF152 negatively regulates mTORC1 activation.
Mol Cell. 2015 Jun 4;58(5):804-18. doi: 10.1016/j.molcel.2015.03.033. Epub 2015 Apr 30.
3
Rag Ubiquitination Recruits a GATOR1: Attenuation of Amino Acid-Induced mTORC1 Signaling.
Mol Cell. 2015 Jun 4;58(5):713-5. doi: 10.1016/j.molcel.2015.05.029.
4
KICSTOR recruits GATOR1 to the lysosome and is necessary for nutrients to regulate mTORC1.
Nature. 2017 Mar 16;543(7645):438-442. doi: 10.1038/nature21423. Epub 2017 Feb 15.
5
SZT2 dictates GATOR control of mTORC1 signalling.
Nature. 2017 Mar 16;543(7645):433-437. doi: 10.1038/nature21378. Epub 2017 Feb 15.
6
Regulation of mTORC1 by the Rag GTPases is necessary for neonatal autophagy and survival.
Nature. 2013 Jan 31;493(7434):679-83. doi: 10.1038/nature11745. Epub 2012 Dec 23.
7
Amino acid-insensitive mTORC1 regulation enables nutritional stress resilience in hematopoietic stem cells.
J Clin Invest. 2017 Apr 3;127(4):1405-1413. doi: 10.1172/JCI89452. Epub 2017 Mar 20.
8
Sestrins inhibit mTORC1 kinase activation through the GATOR complex.
Cell Rep. 2014 Nov 20;9(4):1281-91. doi: 10.1016/j.celrep.2014.10.019.
10
Architecture of the human GATOR1 and GATOR1-Rag GTPases complexes.
Nature. 2018 Apr 5;556(7699):64-69. doi: 10.1038/nature26158. Epub 2018 Mar 28.

引用本文的文献

2
Reply to: Amino acids and KLHL22 do not activate mTORC1 via DEPDC5 degradation.
Nature. 2025 Jan;637(8045):E15-E17. doi: 10.1038/s41586-024-07975-z.
3
SUMO modifies GβL and mediates mTOR signaling.
J Biol Chem. 2024 Apr;300(4):105778. doi: 10.1016/j.jbc.2024.105778. Epub 2024 Feb 21.
4
TRAF4-Mediated LAMTOR1 Ubiquitination Promotes mTORC1 Activation and Inhibits the Inflammation-Induced Colorectal Cancer Progression.
Adv Sci (Weinh). 2024 Mar;11(12):e2301164. doi: 10.1002/advs.202301164. Epub 2024 Jan 16.
5
Skp2-mediated MLKL degradation confers cisplatin-resistant in non-small cell lung cancer cells.
Commun Biol. 2023 Aug 2;6(1):805. doi: 10.1038/s42003-023-05166-6.
6
RAGA prevents tumor immune evasion of LUAD by promoting CD47 lysosome degradation.
Commun Biol. 2023 Feb 23;6(1):211. doi: 10.1038/s42003-023-04581-z.
7
Therapeutic role of mTOR inhibitors in control of SARS-CoV-2 viral replication.
Mol Biol Rep. 2023 Mar;50(3):2701-2711. doi: 10.1007/s11033-022-08188-1. Epub 2022 Dec 20.
8
Protein post-translational modifications in the regulation of cancer hallmarks.
Cancer Gene Ther. 2023 Apr;30(4):529-547. doi: 10.1038/s41417-022-00464-3. Epub 2022 Apr 7.
10
NUMB facilitates autophagy initiation through targeting SCF complex.
Cell Death Differ. 2022 Jul;29(7):1409-1422. doi: 10.1038/s41418-022-00930-3. Epub 2022 Jan 11.

本文引用的文献

2
Functional interaction between autophagy and ciliogenesis.
Nature. 2013 Oct 10;502(7470):194-200. doi: 10.1038/nature12639. Epub 2013 Oct 2.
3
Autophagy promotes primary ciliogenesis by removing OFD1 from centriolar satellites.
Nature. 2013 Oct 10;502(7470):254-7. doi: 10.1038/nature12606. Epub 2013 Oct 2.
6
Autophagy in human health and disease.
N Engl J Med. 2013 May 9;368(19):1845-6. doi: 10.1056/NEJMc1303158.
7
Regulation of mTORC1 by the Rag GTPases is necessary for neonatal autophagy and survival.
Nature. 2013 Jan 31;493(7434):679-83. doi: 10.1038/nature11745. Epub 2012 Dec 23.
8
Ragulator is a GEF for the rag GTPases that signal amino acid levels to mTORC1.
Cell. 2012 Sep 14;150(6):1196-208. doi: 10.1016/j.cell.2012.07.032.
10
mTOR signaling in growth control and disease.
Cell. 2012 Apr 13;149(2):274-93. doi: 10.1016/j.cell.2012.03.017.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验