Suppr超能文献

硒代半胱氨酸作为Rag GTP酶的鸟嘌呤核苷酸解离抑制剂,以控制mTORC1信号传导。

Sestrins function as guanine nucleotide dissociation inhibitors for Rag GTPases to control mTORC1 signaling.

作者信息

Peng Min, Yin Na, Li Ming O

机构信息

Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA.

Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA.

出版信息

Cell. 2014 Sep 25;159(1):122-133. doi: 10.1016/j.cell.2014.08.038.

Abstract

Mechanistic target of rapamycin complex 1 (mTORC1) integrates diverse environmental signals to control cellular growth and organismal homeostasis. In response to nutrients, Rag GTPases recruit mTORC1 to the lysosome to be activated, but how Rags are regulated remains incompletely understood. Here, we show that Sestrins bind to the heterodimeric RagA/B-RagC/D GTPases, and function as guanine nucleotide dissociation inhibitors (GDIs) for RagA/B. Sestrin overexpression inhibits amino-acid-induced Rag guanine nucleotide exchange and mTORC1 translocation to the lysosome. Mutation of the conserved GDI motif creates a dominant-negative form of Sestrin that renders mTORC1 activation insensitive to amino acid deprivation, whereas a cell-permeable peptide containing the GDI motif inhibits mTORC1 signaling. Mice deficient in all Sestrins exhibit reduced postnatal survival associated with defective mTORC1 inactivation in multiple organs during neonatal fasting. These findings reveal a nonredundant mechanism by which the Sestrin family of GDIs regulates the nutrient-sensing Rag GTPases to control mTORC1 signaling.

摘要

雷帕霉素机制性靶标复合物1(mTORC1)整合多种环境信号以控制细胞生长和机体稳态。响应营养物质时,Rag GTP酶将mTORC1招募至溶酶体以被激活,但Rags如何被调控仍未完全了解。在此,我们表明硒蛋白与异二聚体RagA/B-RagC/D GTP酶结合,并作为RagA/B的鸟嘌呤核苷酸解离抑制剂(GDI)发挥作用。硒蛋白过表达抑制氨基酸诱导的Rag鸟嘌呤核苷酸交换以及mTORC1向溶酶体的易位。保守GDI基序的突变产生了一种显性负性形式的硒蛋白,使mTORC1激活对氨基酸剥夺不敏感,而含有GDI基序的细胞可渗透肽抑制mTORC1信号传导。所有硒蛋白均缺失的小鼠在出生后存活率降低,这与新生期禁食期间多个器官中mTORC1失活缺陷有关。这些发现揭示了一种非冗余机制,通过该机制,GDI的硒蛋白家族调节营养感应Rag GTP酶以控制mTORC1信号传导。

相似文献

3
SZT2 dictates GATOR control of mTORC1 signalling.SZT2决定GATOR对mTORC1信号传导的调控。
Nature. 2017 Mar 16;543(7645):433-437. doi: 10.1038/nature21378. Epub 2017 Feb 15.

引用本文的文献

2
Animal amino acid sensor - A review.动物氨基酸传感器——综述
Anim Biosci. 2025 Feb;38(2):198-208. doi: 10.5713/ab.24.0366. Epub 2024 Aug 26.
4
Nutrients: Signal 4 in T cell immunity.营养素:T 细胞免疫中的信号 4。
J Exp Med. 2024 Mar 4;221(3). doi: 10.1084/jem.20221839. Epub 2024 Feb 27.
9
Role of sestrins in metabolic and aging-related diseases.Sesrins 在代谢和衰老相关疾病中的作用。
Biogerontology. 2024 Feb;25(1):9-22. doi: 10.1007/s10522-023-10053-y. Epub 2023 Jul 30.

本文引用的文献

1
Regulation of mTORC1 by amino acids.氨基酸对mTORC1的调控
Trends Cell Biol. 2014 Jul;24(7):400-6. doi: 10.1016/j.tcb.2014.03.003. Epub 2014 Mar 31.
3
Where is mTOR and what is it doing there?mTOR 在哪里?它在那里做什么?
J Cell Biol. 2013 Nov 25;203(4):563-74. doi: 10.1083/jcb.201306041.
5
Sestrins orchestrate cellular metabolism to attenuate aging.Sestrins 调控细胞代谢以延缓衰老。
Cell Metab. 2013 Dec 3;18(6):792-801. doi: 10.1016/j.cmet.2013.08.018. Epub 2013 Sep 19.
10
Amino acid signalling upstream of mTOR.mTOR 上游的氨基酸信号转导。
Nat Rev Mol Cell Biol. 2013 Mar;14(3):133-9. doi: 10.1038/nrm3522. Epub 2013 Jan 30.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验