Suppr超能文献

ATP 水解由与翻译因子 GTPases 相关的结构域驱动静态细菌形态发生蛋白的聚合。

ATP hydrolysis by a domain related to translation factor GTPases drives polymerization of a static bacterial morphogenetic protein.

机构信息

Laboratory of Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA.

出版信息

Proc Natl Acad Sci U S A. 2013 Jan 8;110(2):E151-60. doi: 10.1073/pnas.1210554110. Epub 2012 Dec 24.

Abstract

The assembly of static supramolecular structures is a culminating event of developmental programs. One such structure, the proteinaceous shell (called the coat) that surrounds spores of the bacterium Bacillus subtilis, is composed of about 70 different proteins and represents one of the most durable biological structures known. The coat is built atop a basement layer that contains an ATPase (SpoIVA) that forms a platform required for coat assembly. Here, we show that SpoIVA belongs to the translation factors class of P-loop GTPases and has evolutionarily lost the ability to bind GTP; instead, it uses ATP hydrolysis to drive its self-assembly into static filaments. We demonstrate that ATP hydrolysis is required by every subunit for incorporation into the growing polymer by inducing a conformational change that drives polymerization of a nucleotide-free filament. SpoIVA therefore differs from other self-organizing polymers (dynamic cytoskeletal structures and static intermediate filaments) in that it uses ATP hydrolysis to self-assemble, not disassemble, into a static polymer. We further show that polymerization requires a critical concentration that we propose is only achieved once SpoIVA is recruited to the surface of the developing spore, thereby ensuring that SpoIVA polymerization only occurs at the correct subcellular location during spore morphogenesis.

摘要

静态超分子结构的组装是发育程序的高潮事件。这样的结构之一是包围细菌枯草芽孢杆菌孢子的蛋白质外壳(称为外壳),由大约 70 种不同的蛋白质组成,是已知最持久的生物结构之一。外壳建在含有一种 ATP 酶(SpoIVA)的基底层之上,该酶形成外壳组装所需的平台。在这里,我们表明 SpoIVA 属于翻译因子类 P 环 GTP 酶,并且已经进化失去了结合 GTP 的能力;相反,它利用 ATP 水解来驱动自身组装成静态纤维。我们证明,每个亚基都需要通过诱导导致无核苷酸纤维聚合的构象变化来利用 ATP 水解来掺入正在生长的聚合物中。因此,SpoIVA 与其他自组织聚合物(动态细胞骨架结构和静态中间纤维)不同,它利用 ATP 水解来自我组装成静态聚合物,而不是解组装。我们进一步表明,聚合需要一个临界浓度,我们提出只有当 SpoIVA 被招募到发育中的孢子表面时才会达到这个浓度,从而确保 SpoIVA 聚合仅在孢子形态发生期间在正确的亚细胞位置发生。

相似文献

1
ATP hydrolysis by a domain related to translation factor GTPases drives polymerization of a static bacterial morphogenetic protein.
Proc Natl Acad Sci U S A. 2013 Jan 8;110(2):E151-60. doi: 10.1073/pnas.1210554110. Epub 2012 Dec 24.
2
An autoinhibitory conformation of the Bacillus subtilis spore coat protein SpoIVA prevents its premature ATP-independent aggregation.
FEMS Microbiol Lett. 2014 Sep;358(2):145-53. doi: 10.1111/1574-6968.12452. Epub 2014 May 20.
4
ATP-driven self-assembly of a morphogenetic protein in Bacillus subtilis.
Mol Cell. 2008 Aug 8;31(3):406-14. doi: 10.1016/j.molcel.2008.05.030.
5
Role of SpoIVA ATPase Motifs during Clostridioides difficile Sporulation.
J Bacteriol. 2020 Oct 8;202(21). doi: 10.1128/JB.00387-20.
6
A 2-dimensional ratchet model describes assembly initiation of a specialized bacterial cell surface.
Proc Natl Acad Sci U S A. 2019 Oct 22;116(43):21789-21799. doi: 10.1073/pnas.1907397116. Epub 2019 Oct 9.
8
Amino acids in the Bacillus subtilis morphogenetic protein SpoIVA with roles in spore coat and cortex formation.
J Bacteriol. 2001 Mar;183(5):1645-54. doi: 10.1128/JB.183.5.1645-1654.2001.
9
The coat morphogenetic protein SpoVID is necessary for spore encasement in Bacillus subtilis.
Mol Microbiol. 2009 Nov;74(3):634-49. doi: 10.1111/j.1365-2958.2009.06886.x. Epub 2009 Sep 22.
10
SpoVID guides SafA to the spore coat in Bacillus subtilis.
J Bacteriol. 2001 May;183(10):3041-9. doi: 10.1128/JB.183.10.3041-3049.2001.

引用本文的文献

2
Bacterial spore surface nanoenvironment requires a AAA+ ATPase to promote MurG function.
Proc Natl Acad Sci U S A. 2024 Oct 22;121(43):e2414737121. doi: 10.1073/pnas.2414737121. Epub 2024 Oct 15.
4
Small proteins in Gram-positive bacteria.
FEMS Microbiol Rev. 2023 Nov 1;47(6). doi: 10.1093/femsre/fuad064.
6
Cell-specific cargo delivery using synthetic bacterial spores.
Cell Rep. 2023 Jan 31;42(1):111955. doi: 10.1016/j.celrep.2022.111955. Epub 2023 Jan 4.
7
Bacterial developmental checkpoint that directly monitors cell surface morphogenesis.
Dev Cell. 2022 Feb 7;57(3):344-360.e6. doi: 10.1016/j.devcel.2021.12.021. Epub 2022 Jan 21.
8
Diverse ATPase Proteins in Mobilomes Constitute a Large Potential Sink for Prokaryotic Host ATP.
Front Microbiol. 2021 Jul 8;12:691847. doi: 10.3389/fmicb.2021.691847. eCollection 2021.
10

本文引用的文献

1
Small proteins link coat and cortex assembly during sporulation in Bacillus subtilis.
Mol Microbiol. 2012 May;84(4):682-96. doi: 10.1111/j.1365-2958.2012.08052.x. Epub 2012 Apr 18.
2
Regulation of intraflagellar transport and ciliogenesis by small G proteins.
Int Rev Cell Mol Biol. 2012;293:149-68. doi: 10.1016/B978-0-12-394304-0.00010-5.
3
A rapid assay for affinity and kinetics of molecular interactions with nucleic acids.
Nucleic Acids Res. 2012 Apr;40(7):e48. doi: 10.1093/nar/gkr1299. Epub 2011 Dec 30.
4
Dynamics of spore coat morphogenesis in Bacillus subtilis.
Mol Microbiol. 2012 Jan;83(2):245-60. doi: 10.1111/j.1365-2958.2011.07936.x. Epub 2011 Dec 15.
6
Recent progress in Bacillus subtilis sporulation.
FEMS Microbiol Rev. 2012 Jan;36(1):131-48. doi: 10.1111/j.1574-6976.2011.00310.x. Epub 2011 Oct 25.
7
Surface layers of Clostridium difficile endospores.
J Bacteriol. 2011 Dec;193(23):6461-70. doi: 10.1128/JB.05182-11. Epub 2011 Sep 23.
8
Differential radial capillary action of ligand assay for high-throughput detection of protein-metabolite interactions.
Proc Natl Acad Sci U S A. 2011 Sep 13;108(37):15528-33. doi: 10.1073/pnas.1018949108. Epub 2011 Aug 29.
9
Walking molecules.
Chem Soc Rev. 2011 Jul;40(7):3656-76. doi: 10.1039/c1cs15005g. Epub 2011 Mar 17.
10
Reptilian tooth development.
Genesis. 2011 Apr;49(4):247-60. doi: 10.1002/dvg.20721. Epub 2011 Apr 1.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验