Suppr超能文献

枯草芽孢杆菌芽孢衣壳蛋白SpoIVA的自抑制构象可防止其过早发生不依赖ATP的聚集。

An autoinhibitory conformation of the Bacillus subtilis spore coat protein SpoIVA prevents its premature ATP-independent aggregation.

作者信息

Castaing Jean-Philippe, Lee Scarlett, Anantharaman Vivek, Ravilious Geoffrey E, Aravind L, Ramamurthi Kumaran S

机构信息

Laboratory of Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA.

出版信息

FEMS Microbiol Lett. 2014 Sep;358(2):145-53. doi: 10.1111/1574-6968.12452. Epub 2014 May 20.

Abstract

Spores of Bacillus subtilis are dormant cell types that are formed when the bacterium encounters starvation conditions. Spores are encased in a shell, termed the coat, which is composed of approximately seventy different proteins and protects the spore's genetic material from environmental insults. The structural component of the basement layer of the coat is an exceptional cytoskeletal protein, termed SpoIVA, which binds and hydrolyzes ATP. ATP hydrolysis is utilized to drive a conformational change in SpoIVA that leads to its irreversible self-assembly into a static polymer in vitro. Here, we characterize the middle domain of SpoIVA, the predicted secondary structure of which resembles the chemotaxis protein CheX but, unlike CheX, does not harbor residues required for phosphatase activity. Disruptions in this domain did not abolish ATP hydrolysis, but resulted in mislocalization of the protein and reduction in sporulation efficiency in vivo. In vitro, disruptions in this domain prevented the ATP hydrolysis-driven conformational change in SpoIVA required for polymerization and led to the aggregation of SpoIVA into particles that did not form filaments. We propose a model in which SpoIVA initially assumes a conformation in which it inhibits its own aggregation into particles, and that ATP hydrolysis remodels the protein so that it assumes a polymerization-competent conformation.

摘要

枯草芽孢杆菌的孢子是一种休眠细胞类型,当细菌遇到饥饿条件时形成。孢子被包裹在一层称为外壳的结构中,外壳由大约70种不同的蛋白质组成,可保护孢子的遗传物质免受环境损伤。外壳底层的结构成分是一种特殊的细胞骨架蛋白,称为SpoIVA,它能结合并水解ATP。ATP水解被用于驱动SpoIVA的构象变化,使其在体外不可逆地自组装成一种静态聚合物。在此,我们对SpoIVA的中间结构域进行了表征,其预测的二级结构类似于趋化蛋白CheX,但与CheX不同的是,它不含有磷酸酶活性所需的残基。该结构域的破坏并没有消除ATP水解,但导致了该蛋白的定位错误,并降低了体内的孢子形成效率。在体外,该结构域的破坏阻止了SpoIVA聚合所需的由ATP水解驱动的构象变化,并导致SpoIVA聚集成不形成细丝的颗粒。我们提出了一个模型,其中SpoIVA最初呈现一种构象,在这种构象中它抑制自身聚集成颗粒,而ATP水解重塑该蛋白,使其呈现一种具备聚合能力的构象。

相似文献

1
An autoinhibitory conformation of the Bacillus subtilis spore coat protein SpoIVA prevents its premature ATP-independent aggregation.
FEMS Microbiol Lett. 2014 Sep;358(2):145-53. doi: 10.1111/1574-6968.12452. Epub 2014 May 20.
2
ATP hydrolysis by a domain related to translation factor GTPases drives polymerization of a static bacterial morphogenetic protein.
Proc Natl Acad Sci U S A. 2013 Jan 8;110(2):E151-60. doi: 10.1073/pnas.1210554110. Epub 2012 Dec 24.
3
A 2-dimensional ratchet model describes assembly initiation of a specialized bacterial cell surface.
Proc Natl Acad Sci U S A. 2019 Oct 22;116(43):21789-21799. doi: 10.1073/pnas.1907397116. Epub 2019 Oct 9.
4
ATP-driven self-assembly of a morphogenetic protein in Bacillus subtilis.
Mol Cell. 2008 Aug 8;31(3):406-14. doi: 10.1016/j.molcel.2008.05.030.
5
Amino acids in the Bacillus subtilis morphogenetic protein SpoIVA with roles in spore coat and cortex formation.
J Bacteriol. 2001 Mar;183(5):1645-54. doi: 10.1128/JB.183.5.1645-1654.2001.
6
Role of SpoIVA ATPase Motifs during Clostridioides difficile Sporulation.
J Bacteriol. 2020 Oct 8;202(21). doi: 10.1128/JB.00387-20.
8
The coat morphogenetic protein SpoVID is necessary for spore encasement in Bacillus subtilis.
Mol Microbiol. 2009 Nov;74(3):634-49. doi: 10.1111/j.1365-2958.2009.06886.x. Epub 2009 Sep 22.
9
Interaction between membrane curvature sensitive factors SpoVM and SpoIVA in Bicelle condition.
Biochem Biophys Res Commun. 2024 Jan 29;694:149395. doi: 10.1016/j.bbrc.2023.149395. Epub 2023 Dec 20.

引用本文的文献

3
Bacterial spore surface nanoenvironment requires a AAA+ ATPase to promote MurG function.
Proc Natl Acad Sci U S A. 2024 Oct 22;121(43):e2414737121. doi: 10.1073/pnas.2414737121. Epub 2024 Oct 15.
5
SpoIVA is an essential morphogenetic protein for the formation of heat- and lysozyme-resistant spores in NBRC 14293.
Front Microbiol. 2024 Apr 24;15:1338751. doi: 10.3389/fmicb.2024.1338751. eCollection 2024.
7
Cell-specific cargo delivery using synthetic bacterial spores.
Cell Rep. 2023 Jan 31;42(1):111955. doi: 10.1016/j.celrep.2022.111955. Epub 2023 Jan 4.
9
Role of SpoIVA ATPase Motifs during Clostridioides difficile Sporulation.
J Bacteriol. 2020 Oct 8;202(21). doi: 10.1128/JB.00387-20.
10
A 2-dimensional ratchet model describes assembly initiation of a specialized bacterial cell surface.
Proc Natl Acad Sci U S A. 2019 Oct 22;116(43):21789-21799. doi: 10.1073/pnas.1907397116. Epub 2019 Oct 9.

本文引用的文献

1
Structure and activity of the flagellar rotor protein FliY: a member of the CheC phosphatase family.
J Biol Chem. 2013 May 10;288(19):13493-502. doi: 10.1074/jbc.M112.445171. Epub 2013 Mar 26.
2
ATP hydrolysis by a domain related to translation factor GTPases drives polymerization of a static bacterial morphogenetic protein.
Proc Natl Acad Sci U S A. 2013 Jan 8;110(2):E151-60. doi: 10.1073/pnas.1210554110. Epub 2012 Dec 24.
3
The Bacillus subtilis endospore: assembly and functions of the multilayered coat.
Nat Rev Microbiol. 2013 Jan;11(1):33-44. doi: 10.1038/nrmicro2921. Epub 2012 Dec 3.
4
Small proteins link coat and cortex assembly during sporulation in Bacillus subtilis.
Mol Microbiol. 2012 May;84(4):682-96. doi: 10.1111/j.1365-2958.2012.08052.x. Epub 2012 Apr 18.
5
Dynamics of spore coat morphogenesis in Bacillus subtilis.
Mol Microbiol. 2012 Jan;83(2):245-60. doi: 10.1111/j.1365-2958.2011.07936.x. Epub 2011 Dec 15.
6
Inroads into the structure and function of intermediate filament networks.
J Struct Biol. 2012 Jan;177(1):14-23. doi: 10.1016/j.jsb.2011.11.017. Epub 2011 Nov 18.
8
Architecture of the flagellar rotor.
EMBO J. 2011 Jun 14;30(14):2962-71. doi: 10.1038/emboj.2011.188.
9
Protein localization by recognition of membrane curvature.
Curr Opin Microbiol. 2010 Dec;13(6):753-7. doi: 10.1016/j.mib.2010.09.014. Epub 2010 Oct 13.
10
A distance-weighted interaction map reveals a previously uncharacterized layer of the Bacillus subtilis spore coat.
Curr Biol. 2010 May 25;20(10):934-8. doi: 10.1016/j.cub.2010.03.060. Epub 2010 May 6.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验