Cancer Genomics Branch, National Cancer Center, Goyang-si, Gyeonggi-do, 410-769, Korea.
BMC Genomics. 2012 Dec 27;13:732. doi: 10.1186/1471-2164-13-732.
A major goal of the field of systems biology is to translate genome-wide profiling data (e.g., mRNAs, miRNAs) into interpretable functional networks. However, employing a systems biology approach to better understand the complexities underlying drug resistance phenotypes in cancer continues to represent a significant challenge to the field. Previously, we derived two drug-resistant breast cancer sublines (tamoxifen- and fulvestrant-resistant cell lines) from the MCF7 breast cancer cell line and performed genome-wide mRNA and microRNA profiling to identify differential molecular pathways underlying acquired resistance to these important antiestrogens. In the current study, to further define molecular characteristics of acquired antiestrogen resistance we constructed an "integrative network". We combined joint miRNA-mRNA expression profiles, cancer contexts, miRNA-target mRNA relationships, and miRNA upstream regulators. In particular, to reduce the probability of false positive connections in the network, experimentally validated, rather than prediction-oriented, databases were utilized to obtain connectivity. Also, to improve biological interpretation, cancer contexts were incorporated into the network connectivity.
Based on the integrative network, we extracted "substructures" (network clusters) representing the drug resistant states (tamoxifen- or fulvestrant-resistance cells) compared to drug sensitive state (parental MCF7 cells). We identified un-described network clusters that contribute to antiestrogen resistance consisting of miR-146a, -27a, -145, -21, -155, -15a, -125b, and let-7s, in addition to the previously described miR-221/222.
By integrating miRNA-related network, gene/miRNA expression and text-mining, the current study provides a computational-based systems biology approach for further investigating the molecular mechanism underlying antiestrogen resistance in breast cancer cells. In addition, new miRNA clusters that contribute to antiestrogen resistance were identified, and they warrant further investigation.
系统生物学的主要目标是将全基因组分析数据(例如 mRNAs、miRNAs)转化为可解释的功能网络。然而,采用系统生物学方法来更好地理解癌症中耐药表型的复杂性仍然是该领域的一个重大挑战。之前,我们从 MCF7 乳腺癌细胞系中衍生出两种耐药乳腺癌亚系(他莫昔芬和氟维司群耐药细胞系),并进行了全基因组 mRNA 和 microRNA 分析,以鉴定获得这些重要抗雌激素药物耐药性的潜在差异分子途径。在本研究中,为了进一步确定获得性抗雌激素耐药的分子特征,我们构建了一个“综合网络”。我们结合了联合 miRNA-mRNA 表达谱、癌症背景、miRNA 靶 mRNA 关系和 miRNA 上游调控因子。特别是,为了减少网络中假阳性连接的可能性,我们利用了经过实验验证的而不是预测导向的数据库来获得连接性。此外,为了提高生物学解释,我们将癌症背景纳入网络连接性中。
基于综合网络,我们提取了“子结构”(网络簇),代表耐药状态(他莫昔芬或氟维司群耐药细胞)与药物敏感状态(亲本 MCF7 细胞)相比。我们发现了以前未描述的网络簇,这些网络簇由 miR-146a、-27a、-145、-21、-155、-15a、-125b 和 let-7s 组成,除了先前描述的 miR-221/222 之外,还包括 miR-146a、-27a、-145、-21、-155、-15a、-125b 和 let-7s。
通过整合 miRNA 相关网络、基因/miRNA 表达和文本挖掘,本研究提供了一种基于计算的系统生物学方法,用于进一步研究乳腺癌细胞中抗雌激素耐药的分子机制。此外,还确定了新的 miRNA 簇,它们有助于抗雌激素耐药,值得进一步研究。