Suppr超能文献

基于图形处理单元的小脑支架模型实时仿真

Real-Time Simulation of a Cerebellar Scaffold Model on Graphics Processing Units.

作者信息

Kuriyama Rin, Casellato Claudia, D'Angelo Egidio, Yamazaki Tadashi

机构信息

Graduate School of Informatics and Engineering, The University of Electro-Communications, Tokyo, Japan.

Neurophysiology Unit, Neurocomputational Laboratory, Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy.

出版信息

Front Cell Neurosci. 2021 Apr 7;15:623552. doi: 10.3389/fncel.2021.623552. eCollection 2021.

Abstract

Large-scale simulation of detailed computational models of neuronal microcircuits plays a prominent role in reproducing and predicting the dynamics of the microcircuits. To reconstruct a microcircuit, one must choose neuron and synapse models, placements, connectivity, and numerical simulation methods according to anatomical and physiological constraints. For reconstruction and refinement, it is useful to be able to replace one module easily while leaving the others as they are. One way to achieve this is via a scaffolding approach, in which a simulation code is built on independent modules for placements, connections, and network simulations. Owing to the modularity of functions, this approach enables researchers to improve the performance of the entire simulation by simply replacing a problematic module with an improved one. Casali et al. (2019) developed a spiking network model of the cerebellar microcircuit using this approach, and while it reproduces electrophysiological properties of cerebellar neurons, it takes too much computational time. Here, we followed this scaffolding approach and replaced the simulation module with an accelerated version on graphics processing units (GPUs). Our cerebellar scaffold model ran roughly 100 times faster than the original version. In fact, our model is able to run faster than real time, with good weak and strong scaling properties. To demonstrate an application of real-time simulation, we implemented synaptic plasticity mechanisms at parallel fiber-Purkinje cell synapses, and carried out simulation of behavioral experiments known as gain adaptation of optokinetic response. We confirmed that the computer simulation reproduced experimental findings while being completed in real time. Actually, a computer simulation for 2 s of the biological time completed within 750 ms. These results suggest that the scaffolding approach is a promising concept for gradual development and refactoring of simulation codes for large-scale elaborate microcircuits. Moreover, a real-time version of the cerebellar scaffold model, which is enabled by parallel computing technology owing to GPUs, may be useful for large-scale simulations and engineering applications that require real-time signal processing and motor control.

摘要

神经元微电路详细计算模型的大规模模拟在再现和预测微电路动态方面发挥着重要作用。为了重建微电路,必须根据解剖学和生理学限制选择神经元和突触模型、位置、连接性以及数值模拟方法。为了进行重建和优化,能够轻松替换一个模块而保持其他模块不变是很有用的。实现这一点的一种方法是通过支架方法,其中模拟代码基于用于位置、连接和网络模拟的独立模块构建。由于功能的模块化,这种方法使研究人员能够通过简单地用改进的模块替换有问题的模块来提高整个模拟的性能。卡萨利等人(2019年)使用这种方法开发了小脑微电路的脉冲网络模型,虽然它再现了小脑神经元的电生理特性,但计算时间过长。在这里,我们遵循这种支架方法,并用图形处理单元(GPU)上的加速版本替换了模拟模块。我们的小脑支架模型运行速度比原始版本快约100倍。事实上,我们的模型能够比实时运行更快,具有良好的弱缩放和强缩放特性。为了演示实时模拟的应用,我们在平行纤维 - 浦肯野细胞突触处实现了突触可塑性机制,并对称为视动反应增益适应的行为实验进行了模拟。我们证实计算机模拟在实时完成的同时再现了实验结果。实际上,对2秒生物时间的计算机模拟在750毫秒内完成。这些结果表明,支架方法是大规模精细微电路模拟代码逐步开发和重构的一个有前途的概念。此外,由于GPU的并行计算技术而实现的小脑支架模型的实时版本,可能对需要实时信号处理和运动控制的大规模模拟和工程应用有用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e70d/8058369/2f3711df47df/fncel-15-623552-g0001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验