Suppr超能文献

随机最优前馈-反馈控制确定有无视觉的手臂运动的时间和可变性。

Stochastic optimal feedforward-feedback control determines timing and variability of arm movements with or without vision.

机构信息

Université Paris-Saclay CIAMS, Orsay, France.

CIAMS, Université d'Orléans, Orléans, France.

出版信息

PLoS Comput Biol. 2021 Jun 11;17(6):e1009047. doi: 10.1371/journal.pcbi.1009047. eCollection 2021 Jun.

Abstract

Human movements with or without vision exhibit timing (i.e. speed and duration) and variability characteristics which are not well captured by existing computational models. Here, we introduce a stochastic optimal feedforward-feedback control (SFFC) model that can predict the nominal timing and trial-by-trial variability of self-paced arm reaching movements carried out with or without online visual feedback of the hand. In SFFC, movement timing results from the minimization of the intrinsic factors of effort and variance due to constant and signal-dependent motor noise, and movement variability depends on the integration of visual feedback. Reaching arm movements data are used to examine the effect of online vision on movement timing and variability, and test the model. This modelling suggests that the central nervous system predicts the effects of sensorimotor noise to generate an optimal feedforward motor command, and triggers optimal feedback corrections to task-related errors based on the available limb state estimate.

摘要

人类的运动无论有无视觉,都表现出时间(即速度和持续时间)和可变性特征,这些特征无法被现有计算模型很好地捕捉到。在这里,我们引入了一个随机最优前馈-反馈控制(SFFC)模型,该模型可以预测自主手臂伸展运动的名义时间和逐次试验的可变性,这些运动可以在有或没有手部在线视觉反馈的情况下进行。在 SFFC 中,运动时间的结果是由于恒定和信号相关的运动噪声导致的努力和方差的内在因素最小化,而运动可变性取决于视觉反馈的整合。手臂运动数据用于检验在线视觉对运动时间和可变性的影响,并测试模型。该模型表明,中枢神经系统预测感觉运动噪声的影响,以产生最佳的前馈运动指令,并根据可用的肢体状态估计,触发与任务相关的误差的最佳反馈校正。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/26e1/8221793/306a66a7c196/pcbi.1009047.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验