Suppr超能文献

使用实码遗传算法对大型动力学模型进行参数优化和敏感性分析。

Parameter optimization and sensitivity analysis for large kinetic models using a real-coded genetic algorithm.

机构信息

Department of Bioinformatics, College of Life Sciences, Ritsumeikan University, Kusatsu, Shig 525-8577, Japan.

出版信息

Gene. 2013 Apr 10;518(1):84-90. doi: 10.1016/j.gene.2012.11.080. Epub 2012 Dec 27.

Abstract

Dynamic modeling is a powerful tool for predicting changes in metabolic regulation. However, a large number of input parameters, including kinetic constants and initial metabolite concentrations, are required to construct a kinetic model. Therefore, it is important not only to optimize the kinetic parameters, but also to investigate the effects of their perturbations on the overall system. We investigated the efficiency of the use of a real-coded genetic algorithm (RCGA) for parameter optimization and sensitivity analysis in the case of a large kinetic model involving glycolysis and the pentose phosphate pathway in Escherichia coli K-12. Sensitivity analysis of the kinetic model using an RCGA demonstrated that the input parameter values had different effects on model outputs. The results showed highly influential parameters in the model and their allowable ranges for maintaining metabolite-level stability. Furthermore, it was revealed that changes in these influential parameters may complement one another. This study presents an efficient approach based on the use of an RCGA for optimizing and analyzing parameters in large kinetic models.

摘要

动态建模是预测代谢调控变化的有力工具。然而,构建动力学模型需要大量的输入参数,包括动力学常数和初始代谢物浓度。因此,不仅要优化动力学参数,还要研究其扰动对整个系统的影响。我们研究了实数编码遗传算法(RCGA)在大肠杆菌 K-12 糖酵解和磷酸戊糖途径的大型动力学模型中进行参数优化和敏感性分析的效率。使用 RCGA 对动力学模型进行敏感性分析表明,输入参数值对模型输出有不同的影响。结果表明,模型中有高度影响参数及其维持代谢物水平稳定性的允许范围。此外,还揭示了这些有影响参数的变化可能相互补充。本研究提出了一种基于 RCGA 的有效方法,用于优化和分析大型动力学模型中的参数。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验