Suppr超能文献

来自贝氏硫杆菌的三聚氰胺水解酶的结构为酰胺酶结构域家族的底物特异性提供了新的见解。

The structure of allophanate hydrolase from Granulibacter bethesdensis provides insights into substrate specificity in the amidase signature family.

机构信息

Department of Biological Sciences, Marquette University, Milwaukee, WI 53201, USA.

出版信息

Biochemistry. 2013 Jan 29;52(4):690-700. doi: 10.1021/bi301242m. Epub 2013 Jan 18.

Abstract

Allophanate hydrolase (AH) catalyzes the hydrolysis of allophanate, an intermediate in atrazine degradation and urea catabolism pathways, to NH(3) and CO(2). AH belongs to the amidase signature family, which is characterized by a conserved block of 130 amino acids rich in Gly and Ser and a Ser-cis-Ser-Lys catalytic triad. In this study, the first structures of AH from Granulibacter bethesdensis were determined, with and without the substrate analogue malonate, to 2.2 and 2.8 Å, respectively. The structures confirm the identity of the catalytic triad residues and reveal an altered dimerization interface that is not conserved in the amidase signature family. The structures also provide insights into previously unrecognized substrate specificity determinants in AH. Two residues, Tyr(299) and Arg(307), are within hydrogen bonding distance of a carboxylate moiety of malonate. Both Tyr(299) and Arg(307) were mutated, and the resulting modified enzymes revealed >3 order of magnitude reductions in both catalytic efficiency and substrate stringency. It is proposed that Tyr(299) and Arg(307) serve to anchor and orient the substrate for attack by the catalytic nucleophile, Ser(172). The structure further suggests the presence of a unique C-terminal domain in AH. While this domain is conserved, it does not contribute to catalysis or to the structural integrity of the core domain, suggesting that it may play a role in mediating transient and specific interactions with the urea carboxylase component of urea amidolyase. Analysis of the AH active site architecture offers new insights into common determinants of catalysis and specificity among divergent members of the amidase signature family.

摘要

氨甲酰水解酶(AH)催化异丁烯脲水解,异丁烯脲是莠去津降解和尿素分解途径的中间产物,生成氨(NH3)和二氧化碳(CO2)。AH 属于酰胺酶特征家族,其特征是富含甘氨酸和丝氨酸的保守 130 个氨基酸块和 Ser-cis-Ser-Lys 催化三联体。在这项研究中,首次测定了 Granulibacter bethesdensis 的 AH 结构,分别有无底物类似物丙二酸盐,分辨率为 2.2 和 2.8 Å。结构证实了催化三联体残基的同一性,并揭示了一个改变的二聚化界面,该界面在酰胺酶特征家族中没有保守。结构还提供了关于 AH 中以前未被识别的底物特异性决定因素的见解。两个残基 Tyr(299)和 Arg(307)与丙二酸盐的羧酸盐部分处于氢键距离内。Tyr(299)和 Arg(307)均发生突变,所得修饰酶的催化效率和底物严格性均降低了 3 个数量级以上。推测 Tyr(299)和 Arg(307)用于固定和定向底物,以被催化亲核试剂 Ser(172)攻击。该结构进一步表明 AH 中存在独特的 C 末端结构域。虽然该结构域保守,但它不参与催化或核心结构域的结构完整性,表明它可能在介导与尿素酰胺酶的尿素羧化酶成分的瞬态和特定相互作用中发挥作用。对 AH 活性位点结构的分析提供了对酰胺酶特征家族中不同成员的催化和特异性的常见决定因素的新见解。

相似文献

2
Purification and characterization of allophanate hydrolase (AtzF) from Pseudomonas sp. strain ADP.
J Bacteriol. 2005 Jun;187(11):3731-8. doi: 10.1128/JB.187.11.3731-3738.2005.
3
Structure and function of allophanate hydrolase.
J Biol Chem. 2013 Jul 19;288(29):21422-21432. doi: 10.1074/jbc.M113.453837. Epub 2013 Jun 10.
5
Crystal structure analysis of a bacterial aryl acylamidase belonging to the amidase signature enzyme family.
Biochem Biophys Res Commun. 2015 Nov 13;467(2):268-74. doi: 10.1016/j.bbrc.2015.09.177. Epub 2015 Oct 8.
6
The urea carboxylase and allophanate hydrolase activities of urea amidolyase are functionally independent.
Protein Sci. 2016 Oct;25(10):1812-24. doi: 10.1002/pro.2990. Epub 2016 Aug 5.
7
X-ray structure of the amidase domain of AtzF, the allophanate hydrolase from the cyanuric acid-mineralizing multienzyme complex.
Appl Environ Microbiol. 2015 Jan;81(2):470-80. doi: 10.1128/AEM.02783-14. Epub 2014 Oct 31.
8
Clarifying the catalytic roles of conserved residues in the amidase signature family.
J Biol Chem. 2000 Jun 23;275(25):19177-84. doi: 10.1074/jbc.M001607200.
9
Allophanate hydrolase of Oleomonas sagaranensis involved in an ATP-dependent degradation pathway specific to urea.
FEMS Microbiol Lett. 2005 Apr 1;245(1):61-5. doi: 10.1016/j.femsle.2005.02.023.

引用本文的文献

1
Microbial amidases: Characterization, advances and biotechnological applications.
Biotechnol Notes. 2024 Dec 19;6:44-58. doi: 10.1016/j.biotno.2024.12.003. eCollection 2025.
2
Discovery of an ultraspecific triuret hydrolase (TrtA) establishes the triuret biodegradation pathway.
J Biol Chem. 2021 Jan-Jun;296:100055. doi: 10.1074/jbc.RA120.015631. Epub 2020 Dec 1.
5
Structure and function of urea amidolyase.
Biosci Rep. 2018 Jan 17;38(1). doi: 10.1042/BSR20171617. Print 2018 Feb 28.
6
The urea carboxylase and allophanate hydrolase activities of urea amidolyase are functionally independent.
Protein Sci. 2016 Oct;25(10):1812-24. doi: 10.1002/pro.2990. Epub 2016 Aug 5.
8
X-ray structure of the amidase domain of AtzF, the allophanate hydrolase from the cyanuric acid-mineralizing multienzyme complex.
Appl Environ Microbiol. 2015 Jan;81(2):470-80. doi: 10.1128/AEM.02783-14. Epub 2014 Oct 31.
9
Structure and function of allophanate hydrolase.
J Biol Chem. 2013 Jul 19;288(29):21422-21432. doi: 10.1074/jbc.M113.453837. Epub 2013 Jun 10.

本文引用的文献

1
Processing of X-ray diffraction data collected in oscillation mode.
Methods Enzymol. 1997;276:307-26. doi: 10.1016/S0076-6879(97)76066-X.
2
Crystal structure of urea carboxylase provides insights into the carboxyltransfer reaction.
J Biol Chem. 2012 Mar 16;287(12):9389-98. doi: 10.1074/jbc.M111.319475. Epub 2012 Jan 25.
3
Divergent evolution in enolase superfamily: strategies for assigning functions.
J Biol Chem. 2012 Jan 2;287(1):29-34. doi: 10.1074/jbc.R111.240945. Epub 2011 Nov 8.
5
Early evolution of the biotin-dependent carboxylase family.
BMC Evol Biol. 2011 Aug 9;11:232. doi: 10.1186/1471-2148-11-232.
6
Molecular evolution of urea amidolyase and urea carboxylase in fungi.
BMC Evol Biol. 2011 Mar 29;11:80. doi: 10.1186/1471-2148-11-80.
7
Dali server: conservation mapping in 3D.
Nucleic Acids Res. 2010 Jul;38(Web Server issue):W545-9. doi: 10.1093/nar/gkq366. Epub 2010 May 10.
9
Structure and characterization of amidase from Rhodococcus sp. N-771: Insight into the molecular mechanism of substrate recognition.
Biochim Biophys Acta. 2010 Jan;1804(1):184-92. doi: 10.1016/j.bbapap.2009.10.001. Epub 2009 Oct 9.
10
Biogenesis of glutaminyl-mt tRNAGln in human mitochondria.
Proc Natl Acad Sci U S A. 2009 Sep 22;106(38):16209-14. doi: 10.1073/pnas.0907602106. Epub 2009 Sep 9.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验