Suppr超能文献

评估来自有效地中海海洋保护区的鱼类幼体扩散模式。

Assessing dispersal patterns of fish propagules from an effective mediterranean marine protected area.

机构信息

Laboratory of Conservation and Management of Marine and Coastal Resources, Dipartimento di Scienze e Tecnologie Biologiche ed Ambientali, University of Salento-Consorzio Nazionale Interuniversitario per le Scienze del Mare, Lecce, Italy.

出版信息

PLoS One. 2012;7(12):e52108. doi: 10.1371/journal.pone.0052108. Epub 2012 Dec 20.

Abstract

Successfully enforced marine protected areas (MPAs) have been widely demonstrated to allow, within their boundaries, the recovery of exploited species and beyond their boundaries, the spillover of juvenile and adult fish. Little evidence is available about the so-called 'recruitment subsidy', the augmented production of propagules (i.e. eggs and larvae) due to the increased abundance of large-sized spawners hosted within effective MPAs. Once emitted, propagules can be locally retained and/or exported elsewhere. Patterns of propagule retention and/or export from MPAs have been little investigated, especially in the Mediterranean. This study investigated the potential for propagule production and retention/export from a Mediterranean MPA (Torre Guaceto, SW Adriatic Sea) using the white sea bream, Diplodus sargus sargus, as a model species. A multidisciplinary approach was used combining 1) spatial distribution patterns of individuals (post-settlers and adults) assessed through visual census within Torre Guaceto MPA and in northern and southern unprotected areas, 2) Lagrangian simulations of dispersal based on an oceanographic model of the region and data on early life-history traits of the species (spawning date, pelagic larval duration) and 3) a preliminary genetic study using microsatellite loci. Results show that the MPA hosts higher densities of larger-sized spawners than outside areas, potentially guaranteeing higher propagule production. Model simulations and field observation suggest that larval retention within and long-distance dispersal across MPA boundaries allow the replenishment of the MPA and of exploited populations up to 100 km down-current (southward) from the MPA. This pattern partially agrees with the high genetic homogeneity found in the entire study area (no differences in genetic composition and diversity indices), suggesting a high gene flow. By contributing to a better understanding of propagule dispersal patterns, these findings provide crucial information for the design of MPAs and MPA networks effective to replenish fish stocks and enhance fisheries in unprotected areas.

摘要

成功实施的海洋保护区 (MPA) 已被广泛证明,在其边界内允许受捕捞物种的恢复,在其边界之外允许幼鱼和成年鱼的溢出。关于所谓的“补充繁殖补贴”,即由于有效 MPA 内大型产卵者数量的增加而导致繁殖体(即卵子和幼虫)产量增加的证据很少。一旦释放,繁殖体就可以在当地保留和/或输送到其他地方。MPA 中繁殖体保留和/或输出的模式很少被研究,特别是在地中海。本研究使用白鲷( Diplodus sargus sargus )作为模型物种,调查了地中海 MPA(Torre Guaceto,亚得里亚海西南部)繁殖体产生和保留/输出的潜力。采用了一种多学科方法,结合了 1)个体的空间分布模式(通过 Torre Guaceto MPA 内以及北部和南部未受保护区域的视觉普查进行评估),2)基于该区域的海洋学模型和物种早期生活史特征(产卵日期、浮游幼体持续时间)的数据进行的扩散拉格朗日模拟,以及 3)使用微卫星基因座的初步遗传研究。结果表明,MPA 中较大体型产卵者的密度高于外部区域,这可能保证了更高的繁殖体产量。模型模拟和现场观察表明,MPA 内的幼虫保留和远距离穿过 MPA 边界的扩散允许 MPA 及其受捕捞种群的补充,直到 MPA 下游 100 公里处(向南)。这种模式与整个研究区域发现的高遗传同质性部分一致(遗传组成和多样性指数没有差异),表明基因流很高。通过有助于更好地了解繁殖体扩散模式,这些发现为设计 MPA 和 MPA 网络提供了关键信息,以有效补充鱼类资源并增强未受保护区域的渔业。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8589/3527352/1d08f5f40b9b/pone.0052108.g001.jpg

相似文献

1
Assessing dispersal patterns of fish propagules from an effective mediterranean marine protected area.
PLoS One. 2012;7(12):e52108. doi: 10.1371/journal.pone.0052108. Epub 2012 Dec 20.
2
A multidisciplinary analytical framework to delineate spawning areas and quantify larval dispersal in coastal fish.
Mar Environ Res. 2019 Oct;151:104761. doi: 10.1016/j.marenvres.2019.104761. Epub 2019 Jul 19.
3
Dispersal patterns of coastal fish: implications for designing networks of marine protected areas.
PLoS One. 2012;7(2):e31681. doi: 10.1371/journal.pone.0031681. Epub 2012 Feb 15.
4
Patterns of Fish Connectivity between a Marine Protected Area and Surrounding Fished Areas.
PLoS One. 2016 Dec 1;11(12):e0167441. doi: 10.1371/journal.pone.0167441. eCollection 2016.
7
Diel activity and variability in habitat use of white sea bream in a temperate marine protected area.
Mar Environ Res. 2016 May;116:1-9. doi: 10.1016/j.marenvres.2016.02.007. Epub 2016 Feb 20.
9
Protection reveals density-dependent dynamics in fish populations: A case study in the central Mediterranean.
PLoS One. 2020 Feb 3;15(2):e0228604. doi: 10.1371/journal.pone.0228604. eCollection 2020.
10
Large-scale assessment of Mediterranean marine protected areas effects on fish assemblages.
PLoS One. 2014 Apr 16;9(4):e91841. doi: 10.1371/journal.pone.0091841. eCollection 2014.

引用本文的文献

1
Conservation of fish diversity in protected sites and adjacent fishing areas of the Southern Mexican Pacific Ocean.
PLoS One. 2025 Jun 4;20(6):e0324155. doi: 10.1371/journal.pone.0324155. eCollection 2025.
2
All shallow coastal habitats matter as nurseries for Mediterranean juvenile fish.
Sci Rep. 2021 Jul 16;11(1):14631. doi: 10.1038/s41598-021-93557-2.
3
Protection reveals density-dependent dynamics in fish populations: A case study in the central Mediterranean.
PLoS One. 2020 Feb 3;15(2):e0228604. doi: 10.1371/journal.pone.0228604. eCollection 2020.
4
Connectivity Among Populations of the Top Shell in the Adriatic Sea.
Front Genet. 2019 Mar 8;10:177. doi: 10.3389/fgene.2019.00177. eCollection 2019.
6
Settlement and post-settlement survival rates of the white seabream (Diplodus sargus) in the western Mediterranean Sea.
PLoS One. 2018 Jan 11;13(1):e0190278. doi: 10.1371/journal.pone.0190278. eCollection 2018.
9
Patterns of Fish Connectivity between a Marine Protected Area and Surrounding Fished Areas.
PLoS One. 2016 Dec 1;11(12):e0167441. doi: 10.1371/journal.pone.0167441. eCollection 2016.

本文引用的文献

1
ANALYZING TABLES OF STATISTICAL TESTS.
Evolution. 1989 Jan;43(1):223-225. doi: 10.1111/j.1558-5646.1989.tb04220.x.
4
Larval export from marine reserves and the recruitment benefit for fish and fisheries.
Curr Biol. 2012 Jun 5;22(11):1023-8. doi: 10.1016/j.cub.2012.04.008. Epub 2012 May 24.
5
Dispersal patterns of coastal fish: implications for designing networks of marine protected areas.
PLoS One. 2012;7(2):e31681. doi: 10.1371/journal.pone.0031681. Epub 2012 Feb 15.
6
How Nemo finds home: the neuroecology of dispersal and of population connectivity in larvae of marine fishes.
Integr Comp Biol. 2011 Nov;51(5):826-43. doi: 10.1093/icb/icr004. Epub 2011 May 11.
7
Patterns of variability in early-life traits of fishes depend on spatial scale of analysis.
Biol Lett. 2011 Jun 23;7(3):454-6. doi: 10.1098/rsbl.2010.1149. Epub 2011 Jan 19.
8
Larval connectivity in an effective network of marine protected areas.
PLoS One. 2010 Dec 21;5(12):e15715. doi: 10.1371/journal.pone.0015715.
9
Quantitative trait loci for resistance to fish pasteurellosis in gilthead sea bream (Sparus aurata).
Anim Genet. 2011 Apr;42(2):191-203. doi: 10.1111/j.1365-2052.2010.02110.x. Epub 2010 Oct 14.
10
Using isolation by distance and effective density to estimate dispersal scales in anemonefish.
Evolution. 2010 Sep;64(9):2688-700. doi: 10.1111/j.1558-5646.2010.01003.x.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验