Suppr超能文献

时间稀疏自由形态变形。

Temporal sparse free-form deformations.

机构信息

Biomedical Image Analysis Group, Imperial College London, UK.

出版信息

Med Image Anal. 2013 Oct;17(7):779-89. doi: 10.1016/j.media.2013.04.010. Epub 2013 May 16.

Abstract

FFD represent a widely used model for the non-rigid registration of medical images. The balance between robustness to noise and accuracy in modelling localised motion is typically controlled by the control point grid spacing and the amount of regularisation. More recently, TFFD have been proposed which extend the FFD approach in order to recover smooth motion from temporal image sequences. In this paper, we revisit the classic FFD approach and propose a sparse representation using the principles of compressed sensing. The sparse representation can model both global and local motion accurately and robustly. We view the registration as a deformation reconstruction problem. The deformation is reconstructed from a pair of images (or image sequences) with a sparsity constraint applied to the parametric space. Specifically, we introduce sparsity into the deformation via L1 regularisation, and apply a bending energy regularisation between neighbouring control points within each level to encourage a grouped sparse solution. We further extend the sparsity constraint to the temporal domain and propose a TSFFD which can capture fine local details such as motion discontinuities in both space and time without sacrificing robustness. We demonstrate the capabilities of the proposed framework to accurately estimate deformations in dynamic 2D and 3D image sequences. Compared to the classic FFD and TFFD approach, a significant increase in registration accuracy can be observed in natural images as well as in cardiac images.

摘要

FFD 代表了一种广泛应用于医学图像非刚性配准的模型。在控制噪声鲁棒性和局部运动建模精度之间的平衡通常由控制点网格间距和正则化量来控制。最近,提出了 TFFD,它扩展了 FFD 方法,以便从时间图像序列中恢复平滑运动。在本文中,我们重新审视了经典的 FFD 方法,并提出了一种基于压缩感知原理的稀疏表示。稀疏表示可以准确而稳健地建模全局和局部运动。我们将配准视为变形重建问题。变形通过对参数空间施加稀疏约束来从一对图像(或图像序列)中重建。具体来说,我们通过 L1 正则化在变形中引入稀疏性,并在每个级别内的相邻控制点之间应用弯曲能量正则化,以鼓励分组稀疏解。我们进一步将稀疏约束扩展到时间域,并提出了一种 TSFFD,它可以在不牺牲鲁棒性的情况下捕获空间和时间中的精细局部细节,如运动不连续性。我们展示了所提出的框架在准确估计动态 2D 和 3D 图像序列中的变形的能力。与经典的 FFD 和 TFFD 方法相比,在自然图像和心脏图像中,可以观察到注册精度的显著提高。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验