Suppr超能文献

通过动态贝叶斯变量分区模型推断功能交互和转换模式。

Inferring functional interaction and transition patterns via dynamic Bayesian variable partition models.

机构信息

Department of Statistics, Yale University, Connecticut.

出版信息

Hum Brain Mapp. 2014 Jul;35(7):3314-31. doi: 10.1002/hbm.22404. Epub 2013 Nov 12.

Abstract

Multivariate connectivity and functional dynamics have been of wide interest in the neuroimaging field, and a variety of methods have been developed to study functional interactions and dynamics. In contrast, the temporal dynamic transitions of multivariate functional interactions among brain networks, in particular, in resting state, have been much less explored. This article presents a novel dynamic Bayesian variable partition model (DBVPM) that simultaneously considers and models multivariate functional interactions and their dynamics via a unified Bayesian framework. The basic idea is to detect the temporal boundaries of piecewise quasi-stable functional interaction patterns, which are then modeled by representative signature patterns and whose temporal transitions are characterized by finite-state transition machines. Results on both simulated and experimental datasets demonstrated the effectiveness and accuracy of the DBVPM in dividing temporally transiting functional interaction patterns. The application of DBVPM on a post-traumatic stress disorder (PTSD) dataset revealed substantially different multivariate functional interaction signatures and temporal transitions in the default mode and emotion networks of PTSD patients, in comparison with those in healthy controls. This result demonstrated the utility of DBVPM in elucidating salient features that cannot be revealed by static pair-wise functional connectivity analysis.

摘要

多变量连接和功能动力学在神经影像学领域引起了广泛关注,已经开发了多种方法来研究功能相互作用和动力学。相比之下,脑网络之间的多变量功能相互作用的时间动态变化,特别是在静息状态下,还很少被探索。本文提出了一种新的动态贝叶斯变量分区模型 (DBVPM),该模型通过统一的贝叶斯框架同时考虑和建模多变量功能相互作用及其动力学。基本思想是检测分段准稳定功能相互作用模式的时间边界,然后通过有代表性的特征模式对其进行建模,其时间转换由有限状态转换机来描述。模拟和实验数据集的结果表明,DBVPM 在划分随时间变化的功能相互作用模式方面具有有效性和准确性。将 DBVPM 应用于创伤后应激障碍 (PTSD) 数据集,揭示了 PTSD 患者的默认模式和情绪网络中与健康对照组相比,多变量功能相互作用的特征和时间转换存在显著差异。这一结果表明,DBVPM 可用于阐明静态成对功能连接分析无法揭示的显著特征。

相似文献

1
Inferring functional interaction and transition patterns via dynamic Bayesian variable partition models.
Hum Brain Mapp. 2014 Jul;35(7):3314-31. doi: 10.1002/hbm.22404. Epub 2013 Nov 12.
2
Bayesian Inference for Functional Dynamics Exploring in fMRI Data.
Comput Math Methods Med. 2016;2016:3279050. doi: 10.1155/2016/3279050. Epub 2016 Mar 1.
3
Resting state networks in empirical and simulated dynamic functional connectivity.
Neuroimage. 2017 Oct 1;159:388-402. doi: 10.1016/j.neuroimage.2017.07.065. Epub 2017 Aug 3.
4
Atomic dynamic functional interaction patterns for characterization of ADHD.
Hum Brain Mapp. 2014 Oct;35(10):5262-78. doi: 10.1002/hbm.22548. Epub 2014 May 23.
5
Modeling dynamic functional information flows on large-scale brain networks.
Med Image Comput Comput Assist Interv. 2013;16(Pt 2):698-705. doi: 10.1007/978-3-642-40763-5_86.
6
Characterizing dynamic functional connectivity in the resting brain using variable parameter regression and Kalman filtering approaches.
Neuroimage. 2011 Jun 1;56(3):1222-34. doi: 10.1016/j.neuroimage.2011.03.033. Epub 2011 Mar 21.
7
Dynamic functional network connectivity in idiopathic generalized epilepsy with generalized tonic-clonic seizure.
Hum Brain Mapp. 2017 Feb;38(2):957-973. doi: 10.1002/hbm.23430. Epub 2016 Oct 11.
8
The relation between structural and functional connectivity patterns in complex brain networks.
Int J Psychophysiol. 2016 May;103:149-60. doi: 10.1016/j.ijpsycho.2015.02.011. Epub 2015 Feb 10.
9
Statistical inference of dynamic resting-state functional connectivity using hierarchical observation modeling.
Hum Brain Mapp. 2016 Dec;37(12):4566-4580. doi: 10.1002/hbm.23329. Epub 2016 Jul 28.
10
Modeling fluctuations in default-mode brain network using a spiking neural network.
Int J Neural Syst. 2012 Aug;22(4):1250016. doi: 10.1142/S0129065712500165. Epub 2012 Jul 12.

引用本文的文献

1
Joint Bayesian Estimation of Voxel Activation and Inter-regional Connectivity in fMRI Experiments.
Psychometrika. 2020 Dec;85(4):845-869. doi: 10.1007/s11336-020-09727-0. Epub 2020 Sep 19.
2
Recognizing Brain States Using Deep Sparse Recurrent Neural Network.
IEEE Trans Med Imaging. 2019 Apr;38(4):1058-1068. doi: 10.1109/TMI.2018.2877576. Epub 2018 Oct 23.
3
Identification of Temporal Transition of Functional States Using Recurrent Neural Networks from Functional MRI.
Med Image Comput Comput Assist Interv. 2018 Sep;11072:232-239. doi: 10.1007/978-3-030-00931-1_27. Epub 2018 Sep 13.
4
Large-Scale Circuitry Interactions Upon Earthquake Experiences Revealed by Recurrent Neural Networks.
IEEE Trans Neural Syst Rehabil Eng. 2018 Nov;26(11):2115-2125. doi: 10.1109/TNSRE.2018.2872919. Epub 2018 Oct 5.
5
Functional connectomics from neural dynamics: probabilistic graphical models for neuronal network of .
Philos Trans R Soc Lond B Biol Sci. 2018 Sep 10;373(1758):20170377. doi: 10.1098/rstb.2017.0377.
6
Cerebral microhemorrhages due to traumatic brain injury and their effects on the aging human brain.
Neurobiol Aging. 2018 Jun;66:158-164. doi: 10.1016/j.neurobiolaging.2018.02.026. Epub 2018 Mar 6.
7
Spatio-temporal modeling of connectome-scale brain network interactions via time-evolving graphs.
Neuroimage. 2018 Oct 15;180(Pt B):350-369. doi: 10.1016/j.neuroimage.2017.10.067. Epub 2017 Nov 10.
9
Structure and Topology Dynamics of Hyper-Frequency Networks during Rest and Auditory Oddball Performance.
Front Comput Neurosci. 2016 Oct 17;10:108. doi: 10.3389/fncom.2016.00108. eCollection 2016.
10
Bayesian Inference for Functional Dynamics Exploring in fMRI Data.
Comput Math Methods Med. 2016;2016:3279050. doi: 10.1155/2016/3279050. Epub 2016 Mar 1.

本文引用的文献

1
Dynamic functional connectomics signatures for characterization and differentiation of PTSD patients.
Hum Brain Mapp. 2014 Apr;35(4):1761-78. doi: 10.1002/hbm.22290. Epub 2013 May 14.
2
Optimization of fMRI-derived ROIs based on coherent functional interaction patterns.
Med Image Comput Comput Assist Interv. 2012;15(Pt 3):214-22. doi: 10.1007/978-3-642-33454-2_27.
3
Tracking whole-brain connectivity dynamics in the resting state.
Cereb Cortex. 2014 Mar;24(3):663-76. doi: 10.1093/cercor/bhs352. Epub 2012 Nov 11.
4
Detecting brain state changes via fiber-centered functional connectivity analysis.
Neuroinformatics. 2013 Apr;11(2):193-210. doi: 10.1007/s12021-012-9157-y.
5
DICCCOL: dense individualized and common connectivity-based cortical landmarks.
Cereb Cortex. 2013 Apr;23(4):786-800. doi: 10.1093/cercor/bhs072. Epub 2012 Apr 5.
6
Dynamic connectivity regression: determining state-related changes in brain connectivity.
Neuroimage. 2012 Jul 16;61(4):907-20. doi: 10.1016/j.neuroimage.2012.03.070. Epub 2012 Mar 30.
7
Connectomics signatures of prenatal cocaine exposure affected adolescent brains.
Hum Brain Mapp. 2013 Oct;34(10):2494-510. doi: 10.1002/hbm.22082. Epub 2012 Mar 28.
8
Inferring consistent functional interaction patterns from natural stimulus FMRI data.
Neuroimage. 2012 Jul 16;61(4):987-99. doi: 10.1016/j.neuroimage.2012.01.142. Epub 2012 Mar 14.
9
Ongoing cortical activity at rest: criticality, multistability, and ghost attractors.
J Neurosci. 2012 Mar 7;32(10):3366-75. doi: 10.1523/JNEUROSCI.2523-11.2012.
10
Temporally-independent functional modes of spontaneous brain activity.
Proc Natl Acad Sci U S A. 2012 Feb 21;109(8):3131-6. doi: 10.1073/pnas.1121329109. Epub 2012 Feb 7.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验