Department of Statistics, Yale University, Connecticut.
Hum Brain Mapp. 2014 Jul;35(7):3314-31. doi: 10.1002/hbm.22404. Epub 2013 Nov 12.
Multivariate connectivity and functional dynamics have been of wide interest in the neuroimaging field, and a variety of methods have been developed to study functional interactions and dynamics. In contrast, the temporal dynamic transitions of multivariate functional interactions among brain networks, in particular, in resting state, have been much less explored. This article presents a novel dynamic Bayesian variable partition model (DBVPM) that simultaneously considers and models multivariate functional interactions and their dynamics via a unified Bayesian framework. The basic idea is to detect the temporal boundaries of piecewise quasi-stable functional interaction patterns, which are then modeled by representative signature patterns and whose temporal transitions are characterized by finite-state transition machines. Results on both simulated and experimental datasets demonstrated the effectiveness and accuracy of the DBVPM in dividing temporally transiting functional interaction patterns. The application of DBVPM on a post-traumatic stress disorder (PTSD) dataset revealed substantially different multivariate functional interaction signatures and temporal transitions in the default mode and emotion networks of PTSD patients, in comparison with those in healthy controls. This result demonstrated the utility of DBVPM in elucidating salient features that cannot be revealed by static pair-wise functional connectivity analysis.
多变量连接和功能动力学在神经影像学领域引起了广泛关注,已经开发了多种方法来研究功能相互作用和动力学。相比之下,脑网络之间的多变量功能相互作用的时间动态变化,特别是在静息状态下,还很少被探索。本文提出了一种新的动态贝叶斯变量分区模型 (DBVPM),该模型通过统一的贝叶斯框架同时考虑和建模多变量功能相互作用及其动力学。基本思想是检测分段准稳定功能相互作用模式的时间边界,然后通过有代表性的特征模式对其进行建模,其时间转换由有限状态转换机来描述。模拟和实验数据集的结果表明,DBVPM 在划分随时间变化的功能相互作用模式方面具有有效性和准确性。将 DBVPM 应用于创伤后应激障碍 (PTSD) 数据集,揭示了 PTSD 患者的默认模式和情绪网络中与健康对照组相比,多变量功能相互作用的特征和时间转换存在显著差异。这一结果表明,DBVPM 可用于阐明静态成对功能连接分析无法揭示的显著特征。