Suppr超能文献

连续可微超声波形的联合熵。

Joint entropy of continuously differentiable ultrasonic waveforms.

机构信息

Department of Medicine/Cardiology Division, Campus Box 8215, Washington University School of Medicine, 660 South Euclid Avenue, St. Louis, Missouri 63110-1093, USA.

出版信息

J Acoust Soc Am. 2013 Jan;133(1):283-300. doi: 10.1121/1.4770245.

Abstract

This study is based on an extension of the concept of joint entropy of two random variables to continuous functions, such as backscattered ultrasound. For two continuous random variables, X and Y, the joint probability density p(x,y) is ordinarily a continuous function of x and y that takes on values in a two dimensional region of the real plane. However, in the case where X=f(t) and Y=g(t) are both continuously differentiable functions, X and Y are concentrated exclusively on a curve, γ(t)=(f(t),g(t)), in the x,y plane. This concentration can only be represented using a mathematically "singular" object such as a (Schwartz) distribution. Its use for imaging requires a coarse-graining operation, which is described in this study. Subsequently, removal of the coarse-graining parameter is accomplished using the ergodic theorem. The resulting expression for joint entropy is applied to several data sets, showing the utility of the concept for both materials characterization and detection of targeted liquid nanoparticle ultrasonic contrast agents. In all cases, the sensitivity of these techniques matches or exceeds, sometimes by a factor of two, that demonstrated in previous studies that employed signal energy or alternate entropic quantities.

摘要

本研究基于对两个随机变量的联合熵概念的扩展,扩展到连续函数,如背向散射超声。对于两个连续的随机变量 X 和 Y,联合概率密度 p(x,y)通常是 x 和 y 的连续函数,其取值在实数平面的二维区域内。然而,在 X=f(t)和 Y=g(t)都是连续可微函数的情况下,X 和 Y 仅集中在 x,y 平面上的一条曲线上,γ(t)=(f(t),g(t))。这种集中只能使用数学上的“奇异”对象(如 Schwartz 分布)来表示。其在成像中的使用需要进行粗粒化操作,本研究对此进行了描述。随后,使用遍历定理去除粗粒化参数。所得到的联合熵表达式应用于多个数据集,展示了该概念在材料特征化和检测靶向液体纳米颗粒超声对比剂方面的应用。在所有情况下,这些技术的灵敏度都与之前使用信号能量或其他熵量的研究相匹配或超过,有时甚至超过两倍。

相似文献

引用本文的文献

2
Information Entropy and Its Applications.信息熵及其应用。
Adv Exp Med Biol. 2023;1403:153-167. doi: 10.1007/978-3-031-21987-0_8.
3
Resolution of Murine Toxic Hepatic Injury Quantified With Ultrasound Entropy Metrics.超声熵量化指标定量评估小鼠毒性肝损伤的研究。
Ultrasound Med Biol. 2019 Oct;45(10):2777-2786. doi: 10.1016/j.ultrasmedbio.2019.06.412. Epub 2019 Jul 15.
5
Entropy Energy Waveform Processing: A Comparison Based on the Heat Equation.熵能量波形处理:基于热方程的比较
Entropy (Basel). 2015 Jun;17(6):3518-3551. doi: 10.3390/e17063518. Epub 2015 May 25.
7
Entropic imaging of cataract lens: an in vitro study.白内障晶状体的熵成像:一项体外研究。
PLoS One. 2014 Apr 23;9(4):e96195. doi: 10.1371/journal.pone.0096195. eCollection 2014.

本文引用的文献

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验