Department of Biostatistics, Fielding School of Public Health, University of California, Los Angeles, Los Angeles, CA 90095-1772, USA.
Am J Epidemiol. 2013 Feb 1;177(3):264-72. doi: 10.1093/aje/kws436. Epub 2013 Jan 9.
The incidence of human immunodeficiency virus (HIV) is the rate at which new HIV infections occur in populations. The development of accurate, practical, and cost-effective approaches to estimation of HIV incidence is a priority among researchers in HIV surveillance because of limitations with existing methods. In this paper, we develop methods for estimating HIV incidence rates using multiple biomarkers in biological samples collected from a cross-sectional survey. An advantage of the method is that it does not require longitudinal follow-up of individuals. We use assays for BED, avidity, viral load, and CD4 cell count data from clade B samples collected in several US epidemiologic cohorts between 1987 and 2010. Considering issues of accuracy, cost, and implementation, we identify optimal multiassay algorithms for estimating incidence. We find that the multiple-biomarker approach to cross-sectional HIV incidence estimation corrects the significant deficiencies of currently available approaches and is a potentially powerful and practical tool for HIV surveillance.
人类免疫缺陷病毒(HIV)的发病率是指在人群中新发生 HIV 感染的比率。由于现有方法存在局限性,研究人员优先开发准确、实用且具有成本效益的 HIV 发病率估计方法。在本文中,我们开发了使用来自横断面调查的生物样本中多个生物标志物来估计 HIV 发病率的方法。该方法的一个优点是它不需要对个体进行纵向随访。我们使用来自 1987 年至 2010 年间在美国多个流行病学队列中采集的 B 型 clade 样本的 BED、亲和力、病毒载量和 CD4 细胞计数检测结果。考虑到准确性、成本和实施的问题,我们确定了用于估计发病率的最佳多检测算法。我们发现,用于横断面 HIV 发病率估计的多生物标志物方法纠正了当前可用方法的显著缺陷,是 HIV 监测的一种潜在强大且实用的工具。