Suppr超能文献

使用贝叶斯方法对孟加拉国的人口预测。

Population forecasts for Bangladesh, using a Bayesian methodology.

作者信息

Mahsin Md, Hossain Syed Shahadat

机构信息

Institute of Statistical Research and Training, University of Dhaka, Dhaka 1000, Bangladesh.

出版信息

J Health Popul Nutr. 2012 Dec;30(4):456-63.

Abstract

Population projection for many developing countries could be quite a challenging task for the demographers mostly due to lack of availability of enough reliable data. The objective of this paper is to present an overview of the existing methods for population forecasting and to propose an alternative based on the Bayesian statistics, combining the formality of inference. The analysis has been made using Markov Chain Monte Carlo (MCMC) technique for Bayesian methodology available with the software WinBUGS. Convergence diagnostic techniques available with the WinBUGS software have been applied to ensure the convergence of the chains necessary for the implementation of MCMC. The Bayesian approach allows for the use of observed data and expert judgements by means of appropriate priors, and a more realistic population forecasts, along with associated uncertainty, has been possible.

摘要

对许多发展中国家来说,人口预测对人口统计学家而言可能是一项颇具挑战性的任务,主要原因是缺乏足够可靠的数据。本文的目的是概述现有的人口预测方法,并基于贝叶斯统计提出一种结合推理形式化的替代方法。分析使用了WinBUGS软件中可用的贝叶斯方法的马尔可夫链蒙特卡罗(MCMC)技术。已应用WinBUGS软件中可用的收敛诊断技术来确保实施MCMC所需的链的收敛。贝叶斯方法允许通过适当的先验使用观测数据和专家判断,从而有可能做出更现实的人口预测以及相关的不确定性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f3e6/3763617/f63fdfc920ad/jhpn0030-0456_f01.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验