Suppr超能文献

使用关联贝叶斯概率进行 SNP 优先级排序。

SNP prioritization using a Bayesian probability of association.

机构信息

Department of Health Sciences, University of Leicester, Leicester, United Kingdom.

出版信息

Genet Epidemiol. 2013 Feb;37(2):214-21. doi: 10.1002/gepi.21704. Epub 2012 Dec 26.

Abstract

Prioritization is the process whereby a set of possible candidate genes or SNPs is ranked so that the most promising can be taken forward into further studies. In a genome-wide association study, prioritization is usually based on the P-values alone, but researchers sometimes take account of external annotation information about the SNPs such as whether the SNP lies close to a good candidate gene. Using external information in this way is inherently subjective and is often not formalized, making the analysis difficult to reproduce. Building on previous work that has identified 14 important types of external information, we present an approximate Bayesian analysis that produces an estimate of the probability of association. The calculation combines four sources of information: the genome-wide data, SNP information derived from bioinformatics databases, empirical SNP weights, and the researchers' subjective prior opinions. The calculation is fast enough that it can be applied to millions of SNPS and although it does rely on subjective judgments, those judgments are made explicit so that the final SNP selection can be reproduced. We show that the resulting probability of association is intuitively more appealing than the P-value because it is easier to interpret and it makes allowance for the power of the study. We illustrate the use of the probability of association for SNP prioritization by applying it to a meta-analysis of kidney function genome-wide association studies and demonstrate that SNP selection performs better using the probability of association compared with P-values alone.

摘要

优先级排序是指对一组可能的候选基因或单核苷酸多态性(SNP)进行排序,以便将最有前途的候选基因或 SNP 进一步推进到后续研究中。在全基因组关联研究中,优先级排序通常仅基于 P 值,但研究人员有时会考虑 SNP 的外部注释信息,例如 SNP 是否靠近一个好的候选基因。这种使用外部信息的方法本质上是主观的,并且通常没有形式化,使得分析难以重现。基于先前已经确定的 14 种重要类型的外部信息的工作,我们提出了一种近似贝叶斯分析,该分析可以对关联的概率进行估计。该计算将四个来源的信息结合在一起:全基因组数据、来自生物信息学数据库的 SNP 信息、经验性 SNP 权重以及研究人员的主观先验意见。该计算速度足够快,可以应用于数百万个 SNP,尽管它确实依赖于主观判断,但这些判断是明确的,因此可以重现最终的 SNP 选择。我们表明,与 P 值相比,关联的概率在直观上更具吸引力,因为它更容易解释并且考虑到了研究的效力。我们通过将其应用于肾功能全基因组关联研究的荟萃分析来说明关联概率在 SNP 优先级排序中的使用,并证明与仅使用 P 值相比,使用关联概率进行 SNP 选择的效果更好。

相似文献

1
SNP prioritization using a Bayesian probability of association.使用关联贝叶斯概率进行 SNP 优先级排序。
Genet Epidemiol. 2013 Feb;37(2):214-21. doi: 10.1002/gepi.21704. Epub 2012 Dec 26.

引用本文的文献

9
A review of post-GWAS prioritization approaches.GWAS 后优先级排序方法综述。
Front Genet. 2013 Dec 9;4:280. doi: 10.3389/fgene.2013.00280.

本文引用的文献

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验