Suppr超能文献

基于短序列读长的细菌 16S rRNA 基因分类学研究:有效研究设计的评估。

Taxonomic classification of bacterial 16S rRNA genes using short sequencing reads: evaluation of effective study designs.

机构信息

Department of Human Genetics, University of Chicago, Chicago, Illinois, United States of America.

出版信息

PLoS One. 2013;8(1):e53608. doi: 10.1371/journal.pone.0053608. Epub 2013 Jan 7.

Abstract

Massively parallel high throughput sequencing technologies allow us to interrogate the microbial composition of biological samples at unprecedented resolution. The typical approach is to perform high-throughout sequencing of 16S rRNA genes, which are then taxonomically classified based on similarity to known sequences in existing databases. Current technologies cause a predicament though, because although they enable deep coverage of samples, they are limited in the length of sequence they can produce. As a result, high-throughout studies of microbial communities often do not sequence the entire 16S rRNA gene. The challenge is to obtain reliable representation of bacterial communities through taxonomic classification of short 16S rRNA gene sequences. In this study we explored properties of different study designs and developed specific recommendations for effective use of short-read sequencing technologies for the purpose of interrogating bacterial communities, with a focus on classification using naïve Bayesian classifiers. To assess precision and coverage of each design, we used a collection of ∼8,500 manually curated 16S rRNA gene sequences from cultured bacteria and a set of over one million bacterial 16S rRNA gene sequences retrieved from environmental samples, respectively. We also tested different configurations of taxonomic classification approaches using short read sequencing data, and provide recommendations for optimal choice of the relevant parameters. We conclude that with a judicious selection of the sequenced region and the corresponding choice of a suitable training set for taxonomic classification, it is possible to explore bacterial communities at great depth using current technologies, with only a minimal loss of taxonomic resolution.

摘要

高通量测序技术使我们能够以前所未有的分辨率研究生物样本中的微生物组成。典型的方法是对 16S rRNA 基因进行高通量测序,然后根据与现有数据库中已知序列的相似性进行分类。然而,当前的技术存在一个困境,因为尽管它们能够深度覆盖样本,但它们在能够产生的序列长度上存在限制。因此,微生物群落的高通量研究通常不会对整个 16S rRNA 基因进行测序。挑战在于通过对短 16S rRNA 基因序列进行分类来获得细菌群落的可靠代表。在这项研究中,我们探讨了不同研究设计的特性,并为有效利用短读测序技术研究细菌群落提出了具体建议,重点是使用朴素贝叶斯分类器进行分类。为了评估每种设计的精度和覆盖范围,我们分别使用了来自培养细菌的约 8500 条经过人工精心编辑的 16S rRNA 基因序列集合和从环境样本中获取的超过 100 万个细菌 16S rRNA 基因序列集合。我们还测试了使用短读测序数据的不同分类方法配置,并为最佳选择相关参数提供了建议。我们的结论是,通过明智地选择测序区域和相应的分类训练集,可以使用当前技术深度探索细菌群落,而不会损失太多的分类分辨率。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0848/3538547/dd9349a3e1dd/pone.0053608.g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验