Suppr超能文献

枯草芽孢杆菌:从土壤细菌到超级分泌细胞工厂。

Bacillus subtilis: from soil bacterium to super-secreting cell factory.

机构信息

Department of Medical Microbiology, University of Groningen, University Medical Center Groningen, Hanzeplein 1, P,O, box 30001, Groningen, 9700 RB, the Netherlands.

出版信息

Microb Cell Fact. 2013 Jan 14;12:3. doi: 10.1186/1475-2859-12-3.

Abstract

The biotechnology industry has become a key element in modern societies. Within this industry, the production of recombinant enzymes and biopharmaceutical proteins is of major importance. The global markets for such recombinant proteins are growing rapidly and, accordingly, there is a continuous need for new production platforms that can deliver protein products in greater yields, with higher quality and at lower costs. This calls for the development of next-generation super-secreting cell factories. One of the microbial cell factories that can meet these challenges is the Gram-positive bacterium Bacillus subtilis, an inhabitant of the upper layers of the soil that has the capacity to secrete proteins in the gram per litre range. The engineering of B. subtilis into a next-generation super-secreting cell factory requires combined Systems and Synthetic Biology approaches. In this way, the bacterial protein secretion machinery can be optimized from the single molecule to the network level while, at the same time, taking into account the balanced use of cellular resources. Although highly ambitious, this is an achievable objective due to recent advances in functional genomics and Systems- and Synthetic Biological analyses of B. subtilis cells.

摘要

生物技术产业已成为现代社会的重要组成部分。在这个行业中,重组酶和生物制药蛋白的生产具有重要意义。此类重组蛋白的全球市场正在迅速增长,因此,不断需要新的生产平台,以更高的产量、更高的质量和更低的成本提供蛋白产品。这就需要开发下一代超分泌细胞工厂。能够应对这些挑战的微生物细胞工厂之一是革兰氏阳性细菌枯草芽孢杆菌,它是土壤上层的一种栖息者,能够在每升范围内分泌蛋白。将枯草芽孢杆菌工程化为下一代超分泌细胞工厂需要结合系统和合成生物学方法。通过这种方式,可以从单个分子到网络水平优化细菌蛋白分泌机制,同时考虑到细胞资源的平衡利用。尽管这一目标极具挑战性,但由于近年来在枯草芽孢杆菌细胞的功能基因组学和系统及合成生物学分析方面取得了进展,这一目标是可以实现的。

相似文献

1
Bacillus subtilis: from soil bacterium to super-secreting cell factory.
Microb Cell Fact. 2013 Jan 14;12:3. doi: 10.1186/1475-2859-12-3.
2
Bacillus subtilis as cell factory for pharmaceutical proteins: a biotechnological approach to optimize the host organism.
Biochim Biophys Acta. 2004 Nov 11;1694(1-3):299-310. doi: 10.1016/j.bbamcr.2004.02.011.
4
Exploitation of Bacillus subtilis as a robust workhorse for production of heterologous proteins and beyond.
World J Microbiol Biotechnol. 2018 Sep 10;34(10):145. doi: 10.1007/s11274-018-2531-7.
5
Advances and prospects of Bacillus subtilis cellular factories: From rational design to industrial applications.
Metab Eng. 2018 Nov;50:109-121. doi: 10.1016/j.ymben.2018.05.006. Epub 2018 May 21.
6
Bacillus subtilis: a universal cell factory for industry, agriculture, biomaterials and medicine.
Microb Cell Fact. 2020 Sep 3;19(1):173. doi: 10.1186/s12934-020-01436-8.
7
Synthetic Biology Toolbox and Chassis Development in Bacillus subtilis.
Trends Biotechnol. 2019 May;37(5):548-562. doi: 10.1016/j.tibtech.2018.10.005. Epub 2018 Nov 13.
8
Recent Advances in Recombinant Protein Production by .
Annu Rev Food Sci Technol. 2020 Mar 25;11:295-318. doi: 10.1146/annurev-food-032519-051750. Epub 2019 Dec 24.
10
The multifunctionality of expression systems in : Emerging devices for the production of recombinant proteins.
Exp Biol Med (Maywood). 2021 Dec;246(23):2443-2453. doi: 10.1177/15353702211030189. Epub 2021 Aug 23.

引用本文的文献

1
Broad-Spectrum Virus Elimination by Nasal Mucosa-Colonized Wild-Type .
Research (Wash D C). 2025 Jul 17;8:0781. doi: 10.34133/research.0781. eCollection 2025.
2
Toward Antibody Production in Genome-Minimized Strains.
ACS Synth Biol. 2025 Mar 21;14(3):740-755. doi: 10.1021/acssynbio.4c00688. Epub 2025 Feb 27.
3
Genetic Code Expansion for Controlled Surfactin Production in a High Cell-Density Strain.
Microorganisms. 2025 Feb 6;13(2):353. doi: 10.3390/microorganisms13020353.
4
Metabolic engineering for single-cell protein production from renewable feedstocks and its applications.
Adv Biotechnol (Singap). 2024 Sep 29;2(4):35. doi: 10.1007/s44307-024-00042-8.
5
Recombinant Production of Bovine α-Casein in Genome-Reduced Strain IIG-Bs-20-5-1.
Microorganisms. 2025 Jan 2;13(1):60. doi: 10.3390/microorganisms13010060.
6
New PALM-compatible integration vectors for use in the Gram-positive model bacterium .
Microbiol Spectr. 2024 Nov 4;12(12):e0161924. doi: 10.1128/spectrum.01619-24.
7
Exploring the Probiotic Potential of Bacteroides spp. Within One Health Paradigm.
Probiotics Antimicrob Proteins. 2025 Apr;17(2):681-704. doi: 10.1007/s12602-024-10370-9. Epub 2024 Oct 8.
10
Coenzyme A biosynthesis in : discovery of a novel precursor metabolite for salvage and its uptake system.
mBio. 2024 Oct 16;15(10):e0177224. doi: 10.1128/mbio.01772-24. Epub 2024 Aug 28.

本文引用的文献

1
Novel twin-arginine translocation pathway-dependent phenotypes of Bacillus subtilis unveiled by quantitative proteomics.
J Proteome Res. 2013 Feb 1;12(2):796-807. doi: 10.1021/pr300866f. Epub 2013 Jan 11.
3
Structure of the TatC core of the twin-arginine protein transport system.
Nature. 2012 Dec 13;492(7428):210-4. doi: 10.1038/nature11683. Epub 2012 Dec 2.
4
Mapping the twin-arginine protein translocation network of Bacillus subtilis.
Proteomics. 2013 Mar;13(5):800-11. doi: 10.1002/pmic.201200416. Epub 2013 Jan 21.
5
The LIKE system, a novel protein expression toolbox for Bacillus subtilis based on the liaI promoter.
Microb Cell Fact. 2012 Oct 30;11:143. doi: 10.1186/1475-2859-11-143.
7
High-salinity growth conditions promote Tat-independent secretion of Tat substrates in Bacillus subtilis.
Appl Environ Microbiol. 2012 Nov;78(21):7733-44. doi: 10.1128/AEM.02093-12. Epub 2012 Aug 24.
8
Degradation of the twin-arginine translocation substrate YwbN by extracytoplasmic proteases of Bacillus subtilis.
Appl Environ Microbiol. 2012 Nov;78(21):7801-4. doi: 10.1128/AEM.02023-12. Epub 2012 Aug 24.
10
Characterization and optimization of Bacillus subtilis ATCC 6051 as an expression host.
J Biotechnol. 2013 Jan 20;163(2):97-104. doi: 10.1016/j.jbiotec.2012.06.034. Epub 2012 Jul 10.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验