Suppr超能文献

低速气流中人体吸气的计算流体动力学研究:对口呼吸模拟的方向影响

Computational fluid dynamics investigation of human aspiration in low-velocity air: orientation effects on mouth-breathing simulations.

作者信息

Anthony T Renée, Anderson Kimberly R

机构信息

Department of Occupational and Environmental Health, University of Iowa, 105 River Street, Iowa City, IA 52242, USA.

出版信息

Ann Occup Hyg. 2013 Jul;57(6):740-57. doi: 10.1093/annhyg/mes108. Epub 2013 Jan 12.

Abstract

Computational fluid dynamics was used to investigate particle aspiration efficiency in low-moving air typical of occupational settings (0.1-0.4 m s(-1)). Fluid flow surrounding an inhaling humanoid form and particle trajectories traveling into the mouth were simulated for seven discrete orientations relative to the oncoming wind (0°, 15°, 30°, 60°, 90°, 135° and 180°). Three continuous inhalation velocities (1.81, 4.33, and 12.11 m s(-1)), representing the mean inhalation velocity associated with sinusoidal at-rest, moderate, and heavy breathing (7.5, 20.8, and 50.3 l min(-1), respectively) were simulated. These simulations identified a decrease in aspiration efficiency below the inhalable particulate mass (IPM) criterion of 0.5 for large particles, with no aspiration of particles 100 µm and larger for at-rest breathing and no aspiration of particles 116 µm for moderate breathing, over all freestream velocities and orientations relative to the wind. For particles smaller than 100 µm, orientation-averaged aspiration efficiency exceeded the IPM criterion, with increased aspiration efficiency as freestream velocity decreased. Variability in aspiration efficiencies between velocities was low for small (<22 µm) particles, but increased with increasing particle size over the range of conditions studied. Orientation-averaged simulation estimates of aspiration efficiency agree with the linear form of the proposed linear low-velocity inhalable convention through 100 µm, based on laboratory studies using human mannequins.

摘要

采用计算流体动力学方法研究职业环境中典型的低风速(0.1 - 0.4 m s⁻¹)下颗粒吸入效率。针对相对于迎面而来风的七个离散方向(0°、15°、30°、60°、90°、135°和180°),模拟了围绕吸气类人模型的流体流动以及进入口腔的颗粒轨迹。模拟了三种连续的吸入速度(1.81、4.33和12.11 m s⁻¹),分别代表与静息、适度和重度正弦呼吸相关的平均吸入速度(分别为7.5、20.8和50.3 l min⁻¹)。这些模拟结果表明,对于大颗粒,吸入效率低于可吸入颗粒物质量(IPM)标准0.5,在所有自由流速度和相对于风的方向上,静息呼吸时100 µm及更大的颗粒无吸入,适度呼吸时116 µm的颗粒无吸入。对于小于100 µm的颗粒,方向平均吸入效率超过IPM标准,且随着自由流速度降低吸入效率增加。在研究的条件范围内,小颗粒(<22 µm)速度之间的吸入效率变化较小,但随着颗粒尺寸增大而增加。基于使用人体模型的实验室研究,方向平均吸入效率模拟估计值与所提出的线性低速可吸入准则的线性形式在100 µm范围内一致。

相似文献

3
Contribution of facial feature dimensions and velocity parameters on particle inhalability.
Ann Occup Hyg. 2010 Aug;54(6):710-25. doi: 10.1093/annhyg/meq040. Epub 2010 May 10.
4
An empirical model of human aspiration in low-velocity air using CFD investigations.
J Occup Environ Hyg. 2015;12(4):245-55. doi: 10.1080/15459624.2014.970273.
5
Design and computational fluid dynamics investigation of a personal, high flow inhalable sampler.
Ann Occup Hyg. 2010 Jun;54(4):427-42. doi: 10.1093/annhyg/meq029. Epub 2010 Apr 23.
6
Uncertainty in aspiration efficiency estimates from torso simplifications in computational fluid dynamics simulations.
Ann Occup Hyg. 2013 Mar;57(2):184-99. doi: 10.1093/annhyg/mes063. Epub 2012 Sep 24.
7
Sampling efficiency of modified 37-mm sampling cassettes using computational fluid dynamics.
J Occup Environ Hyg. 2016;13(2):148-58. doi: 10.1080/15459624.2015.1091961.
8
Evaluation of facial features on particle inhalation.
Ann Occup Hyg. 2005 Mar;49(2):179-93. doi: 10.1093/annhyg/meh082.
9
Influence of secondary aspiration on human aspiration efficiency.
J Aerosol Sci. 2014 Sep;75:65-80. doi: 10.1016/j.jaerosci.2014.04.008.
10
Solid versus liquid particle sampling efficiency of three personal aerosol samplers when facing the wind.
Ann Occup Hyg. 2012 Mar;56(2):194-206. doi: 10.1093/annhyg/mer077. Epub 2011 Sep 29.

引用本文的文献

1
Did You Just Cough? Visualization of Vapor Diffusion in an Office Using Computational Fluid Dynamics Analysis.
Int J Environ Res Public Health. 2022 Aug 11;19(16):9928. doi: 10.3390/ijerph19169928.
2
A Rapidly Deployable Test Suite for Respiratory Protective Devices in the COVID-19 Pandemic.
Appl Biosaf. 2020 Sep;25(3):161-168. doi: 10.1177/1535676020947284. Epub 2020 Oct 8.
3
Mathematical model for preoperative identification of obstructed nasal subsites.
Acta Otorhinolaryngol Ital. 2017 Oct;37(5):410-415. doi: 10.14639/0392-100X-1385.
4
Influence of secondary aspiration on human aspiration efficiency.
J Aerosol Sci. 2014 Sep;75:65-80. doi: 10.1016/j.jaerosci.2014.04.008.
5
Sampling efficiency of modified 37-mm sampling cassettes using computational fluid dynamics.
J Occup Environ Hyg. 2016;13(2):148-58. doi: 10.1080/15459624.2015.1091961.
6
An empirical model of human aspiration in low-velocity air using CFD investigations.
J Occup Environ Hyg. 2015;12(4):245-55. doi: 10.1080/15459624.2014.970273.

本文引用的文献

1
Uncertainty in aspiration efficiency estimates from torso simplifications in computational fluid dynamics simulations.
Ann Occup Hyg. 2013 Mar;57(2):184-99. doi: 10.1093/annhyg/mes063. Epub 2012 Sep 24.
2
Performance study of personal inhalable aerosol samplers at ultra-low wind speeds.
Ann Occup Hyg. 2012 Mar;56(2):207-20. doi: 10.1093/annhyg/mer089. Epub 2011 Oct 10.
3
Proposed modification to the inhalable aerosol convention applicable to realistic workplace wind speeds.
Ann Occup Hyg. 2011 Jun;55(5):476-84. doi: 10.1093/annhyg/meq100. Epub 2011 Jan 21.
4
Contribution of facial feature dimensions and velocity parameters on particle inhalability.
Ann Occup Hyg. 2010 Aug;54(6):710-25. doi: 10.1093/annhyg/meq040. Epub 2010 May 10.
5
Inhalability of micron particles through the nose and mouth.
Inhal Toxicol. 2010 Mar;22(4):287-300. doi: 10.3109/08958370903295204.
6
Visualization of the airflow around a life-sized, heated, breathing mannequin at ultralow windspeeds.
Ann Occup Hyg. 2008 Jul;52(5):351-60. doi: 10.1093/annhyg/men022. Epub 2008 May 22.
7
Analytical performance criteria. The need for an international sampling convention for inhalable dust in calm air.
J Occup Environ Hyg. 2006 Oct;3(10):D94-101. doi: 10.1080/15459620600920580.
8
A survey of wind speeds in indoor workplaces.
Ann Occup Hyg. 1998 Jul;42(5):303-13. doi: 10.1016/s0003-4878(98)00031-3.
10
The human head as a dust sampler.
Inhaled Part. 1975 Sep;4 Pt 1:93-105.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验