Department of Structural Biology, Weizmann Institute of Science, Rehovot 76100, Israel.
J Mol Biol. 2013 Mar 25;425(6):1028-38. doi: 10.1016/j.jmb.2013.01.009. Epub 2013 Jan 11.
Although largely deemed as structurally conserved, catalytic metal ion sites can rearrange, thereby contributing to enzyme evolvability. Here, we show that in paraoxonase-1, a lipo-lactonase, catalytic promiscuity and divergence into an organophosphate hydrolase are correlated with an alternative mode of the catalytic Ca(2+). We describe the crystal structures of active-site mutants bearing mutations at position 115. The histidine at this position acts as a base to activate the lactone-hydrolyzing water molecule. Mutations to Trp or Gln indeed diminish paraoxonase-1's lactonase activity; however, the promiscuous organophosphate hydrolase activity is enhanced. The structures reveal a 1.8-Å upward displacement towards the enzyme's surface of the catalytic Ca(2+) in the His115 mutants and configurational changes in the ligating side chains and water molecules, relative to the wild-type enzyme. Biochemical analysis and molecular dynamics simulations suggest that this alternative, upward metal mode mediates the promiscuous hydrolysis of organophosphates. The upward Ca(2+) mode observed in the His115 mutants also appears to mediate the wild type's paraoxonase activity. However, whereas the upward mode dominates in the Trp115 mutant, it is scarcely populated in wild type. Thus, the plasticity of active-site metal ions may permit alternative, latent, promiscuous activities and also provide the basis for the divergence of new enzymatic functions.
虽然被认为在结构上是保守的,但催化金属离子位点可以重新排列,从而有助于酶的进化。在这里,我们表明在对氧磷酶 1 中,一种脂肪酶,催化的混杂性和向有机磷水解酶的分化与催化 Ca(2+)的替代模式相关。我们描述了在位置 115 具有突变的活性位点突变体的晶体结构。该位置的组氨酸充当激活内酯水解水分子的碱。确实,突变到色氨酸或谷氨酰胺会降低对氧磷酶 1 的脂肪酶活性;然而,混杂的有机磷水解酶活性得到增强。结构显示,在 His115 突变体中,催化 Ca(2+)向上位移 1.8Å 至酶表面,并且相对于野生型酶,连接侧链和水分子的构象发生变化。生化分析和分子动力学模拟表明,这种替代的、向上的金属模式介导了混杂的有机磷酸盐水解。在 His115 突变体中观察到的向上 Ca(2+)模式似乎也介导了野生型的对氧磷酶活性。然而,虽然向上模式在 Trp115 突变体中占主导地位,但在野生型中几乎不存在。因此,活性位点金属离子的可塑性可能允许替代的、潜在的混杂活性,并为新酶功能的分化提供基础。