Department of Biomedicine, Aarhus University, DK-8000 Aarhus C, Denmark. tc@fi.au.dk
J Gen Physiol. 2013 Feb;141(2):179-92. doi: 10.1085/jgp.201210892. Epub 2013 Jan 14.
In skeletal muscle, excitation leads to increased Na(+), loss of K(+), increased K(+), depolarization, and Cl(-) influx. This study quantifies these changes in rat extensor digitorum longus (EDL) muscles in vitro and in vivo using flame photometric determination of Na(+) and K(+) and (36)Cl as a tracer for Cl(-). In vitro, 5-Hz stimulation for 300 s increased intracellular Na(+) content by 4.6 ± 1.2 µmol/g wet wt (P < 0.002) and decreased intracellular K(+) content by 5.5 ± 2.3 µmol/g wet wt (P < 0.03). This would increase K(+) by 28 ± 12 mM, sufficient to cause severe loss of excitability as the result of inactivation of Na(+) channels. In rat EDL, in vivo stimulation at 5 Hz for 300 s or 60 Hz for 60 s induced significant loss of K(+) (P < 0.01), sufficient to increase K(+) by 71 ± 22 mM and 73 ± 15 mM, respectively. In spite of this, excitability may be maintained by the rapid and marked stimulation of the electrogenic Na(+),K(+) pumps already documented. This may require full utilization of the transport capacity of Na(+),K(+) pumps, which then becomes a limiting factor for physical performance. In buffer containing (36)Cl, depolarization induced by increasing K(+) to 40-80 mM augmented intracellular (36)Cl by 120-399% (P < 0.001). Stimulation for 120-300 s at 5-20 Hz increased intracellular (36)Cl by 100-188% (P < 0.001). In rats, Cl(-) transport in vivo was examined by injecting (36)Cl, where electrical stimulation at 5 Hz for 300 s or 60 Hz for 60 s increased (36)Cl uptake by 81% (P < 0.001) and 84% (P < 0.001), respectively, indicating excitation-induced depolarization. Cl(-) influx favors repolarization, improving K(+) clearance and maintenance of excitability. In conclusion, excitation-induced fluxes of Na(+), K(+), and Cl(-) can be quantified in vivo, providing new evidence that in working muscles, extracellular accumulation of K(+) is considerably higher than previously observed and the resulting depression of membrane excitability may be a major cause of muscle fatigue.
在骨骼肌中,兴奋会导致Na(+)增加、K(+)丢失、K(+)增加、去极化和 Cl(-)内流。本研究使用火焰光度法测定 Na(+)和 K(+)和 (36)Cl 作为 Cl(-)示踪剂,在体外和体内定量测定大鼠伸趾长肌 (EDL) 中的这些变化。在体外,5 Hz 刺激 300 s 可使细胞内 Na(+)含量增加 4.6 ± 1.2 µmol/g 湿重 (P < 0.002),并使细胞内 K(+)含量减少 5.5 ± 2.3 µmol/g 湿重 (P < 0.03)。这将使 K(+)增加 28 ± 12 mM,足以导致 Na(+)通道失活引起的严重兴奋性丧失。在大鼠 EDL 中,体内 5 Hz 刺激 300 s 或 60 Hz 刺激 60 s 会导致 K(+)明显丢失 (P < 0.01),足以使 K(+)分别增加 71 ± 22 mM 和 73 ± 15 mM。尽管如此,兴奋性可能通过已经记录的电致 Na(+),K(+)泵的快速和显著刺激来维持。这可能需要充分利用 Na(+),K(+)泵的转运能力,这随后成为身体表现的限制因素。在含有 (36)Cl 的缓冲液中,将 K(+)增加到 40-80 mM 引起的去极化会使细胞内 (36)Cl 增加 120-399% (P < 0.001)。在 5-20 Hz 刺激 120-300 s 会使细胞内 (36)Cl 增加 100-188% (P < 0.001)。在大鼠中,通过注射 (36)Cl 检查 Cl(-)转运,5 Hz 刺激 300 s 或 60 Hz 刺激 60 s 分别使 (36)Cl 摄取增加 81% (P < 0.001)和 84% (P < 0.001),表明兴奋诱导的去极化。Cl(-)内流有利于复极化,改善 K(+)清除和兴奋性维持。总之,可在体内定量测定兴奋诱导的 Na(+)、K(+)和 Cl(-)通量,为工作肌肉中外源性 K(+)的积累明显高于先前观察到的水平提供了新证据,并且由此导致的膜兴奋性降低可能是肌肉疲劳的主要原因。