Lamb Iain R, Murrant Coral L
Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, Ontario, Canada.
J Physiol. 2015 Dec 1;593(23):5111-26. doi: 10.1113/JP270613. Epub 2015 Nov 15.
Redundancy, in active hyperaemia, where one vasodilator can compensate for another if the first is missing, would require that one vasodilator inhibits the effects of another; therefore, if the first vasodilator is inhibited, its inhibitory influence on the second vasodilator is removed and the second vasodilator exerts a greater vasodilatory effect. We aimed to determine whether vasodilators relevant to skeletal muscle contraction [potassium chloride (KCl), adenosine (ADO) and nitric oxide] inhibit one another and, in addition, to investigate the mechanisms for this interaction. We used the hamster cremaster muscle and intravital microscopy to directly visualize 2A arterioles when exposed to a range of concentrations of one vasodilator [10(-8) to 10(-5) M S-nitroso-N-acetyl penicillamine (SNAP), 10(-8) to 10(-5) M ADO, 10 and 20 mM KCl] in the absence and then in the presence of a second vasodilator (10(-7) M ADO, 10(-7) M SNAP, 10 mM KCl). We found that KCl significantly attenuated SNAP-induced vasodilatations by ∼65.8% and vasodilatations induced by 10(-8) to 10(-6) M ADO by ∼72.8%. Furthermore, we observed that inhibition of KCl vasodilatation, by antagonizing either Na(+)/K(+) ATPase using ouabain or inward rectifying potassium channels using barium chloride, could restore the SNAP-induced vasodilatation by up to ∼53.9% and 30.6%, respectively, and also restore the ADO-induced vasodilatations by up to ∼107% and 76.7%, respectively. Our data show that vasodilators relevant to muscle contraction can interact in a way that alters the effectiveness of other vasodilators. These data suggest that active hyperaemia may be the result of complex interactions between multiple vasodilators via a redundant control paradigm.
在主动充血中存在冗余现象,即如果一种血管舒张剂缺失,另一种血管舒张剂可以代偿,这就要求一种血管舒张剂抑制另一种血管舒张剂的作用;因此,如果第一种血管舒张剂受到抑制,它对第二种血管舒张剂的抑制作用就会消除,第二种血管舒张剂就会发挥更大的血管舒张作用。我们旨在确定与骨骼肌收缩相关的血管舒张剂[氯化钾(KCl)、腺苷(ADO)和一氧化氮]是否相互抑制,此外,还研究这种相互作用的机制。我们使用仓鼠提睾肌和活体显微镜,在暴露于一系列浓度的一种血管舒张剂[10⁻⁸至10⁻⁵ M S-亚硝基-N-乙酰青霉胺(SNAP)、10⁻⁸至10⁻⁵ M ADO、10和20 mM KCl]时,先在不存在然后在存在第二种血管舒张剂(10⁻⁷ M ADO、10⁻⁷ M SNAP、10 mM KCl)的情况下,直接观察2A小动脉。我们发现,KCl使SNAP诱导的血管舒张显著减弱约65.8%,使10⁻⁸至10⁻⁶ M ADO诱导的血管舒张减弱约72.8%。此外,我们观察到,通过使用哇巴因拮抗Na⁺/K⁺ ATP酶或使用氯化钡拮抗内向整流钾通道来抑制KCl血管舒张,可分别使SNAP诱导的血管舒张恢复高达约53.9%和30.6%,也可分别使ADO诱导的血管舒张恢复高达约107%和76.7%。我们的数据表明,与肌肉收缩相关的血管舒张剂可以以改变其他血管舒张剂有效性的方式相互作用。这些数据表明,主动充血可能是多种血管舒张剂通过冗余控制模式进行复杂相互作用的结果。