Suppr超能文献

2500 万年野古草进化过程中长末端重复转座子积累的动态变化。

The dynamics of LTR retrotransposon accumulation across 25 million years of panicoid grass evolution.

机构信息

Department of Genetics, University of Georgia, Athens, GA 30602, USA.

出版信息

Heredity (Edinb). 2013 Feb;110(2):194-204. doi: 10.1038/hdy.2012.99.

Abstract

Sample sequence analysis was employed to investigate the repetitive DNAs that were most responsible for the evolved variation in genome content across seven panicoid grasses with >5-fold variation in genome size and different histories of polyploidy. In all cases, the most abundant repeats were LTR retrotransposons, but the particular families that had become dominant were found to be different in the Pennisetum, Saccharum, Sorghum and Zea lineages. One element family, Huck, has been very active in all of the studied species over the last few million years. This suggests the transmittal of an active or quiescent autonomous set of Huck elements to this lineage at the founding of the panicoids. Similarly, independent recent activity of Ji and Opie elements in Zea and of Leviathan elements in Sorghum and Saccharum species suggests that members of these families with exceptional activation potential were present in the genome(s) of the founders of these lineages. In a detailed analysis of the Zea lineage, the combined action of several families of LTR retrotransposons were observed to have approximately doubled the genome size of Zea luxurians relative to Zea mays and Zea diploperennis in just the last few million years. One of the LTR retrotransposon amplification bursts in Zea may have been initiated by polyploidy, but the great majority of transposable element activations are not. Instead, the results suggest random activation of a few or many LTR retrotransposons families in particular lineages over evolutionary time, with some families especially prone to future activation and hyper-amplification.

摘要

采用样本序列分析的方法,研究了在七个具有 5 倍以上基因组大小差异和不同多倍体历史的panicoid 草中,对基因组内容进化变化最具影响的重复 DNA。在所有情况下,最丰富的重复序列是 LTR 反转录转座子,但在 Pennisetum、Saccharum、Sorghum 和 Zea 谱系中,成为优势的特定家族是不同的。一个元素家族 Huck 在过去几百万年中,在所有研究的物种中都非常活跃。这表明在 panicoid 起源时,将一组活跃或静止的自主 Huck 元素传递到该谱系中。同样,Ji 和 Opie 元素在 Zea 中的独立近期活动,以及 Leviathan 元素在 Sorghum 和 Saccharum 物种中的独立近期活动,表明这些家族中具有异常激活潜力的成员存在于这些谱系的创始人的基因组中。在对 Zea 谱系的详细分析中,观察到几种 LTR 反转录转座子家族的共同作用,使得 Zea luxurians 的基因组大小相对于 Zea mays 和 Zea diploperennis 大约增加了两倍,仅在过去几百万年中。Zea 中的一个 LTR 反转录转座子扩增爆发可能是由多倍体引起的,但大多数转座元件的激活并不是这样。相反,结果表明,在进化过程中,特定谱系中的少数或许多 LTR 反转录转座子家族会随机激活,其中一些家族特别容易受到未来的激活和超扩增的影响。

相似文献

1
The dynamics of LTR retrotransposon accumulation across 25 million years of panicoid grass evolution.
Heredity (Edinb). 2013 Feb;110(2):194-204. doi: 10.1038/hdy.2012.99.
2
Exceptional diversity, non-random distribution, and rapid evolution of retroelements in the B73 maize genome.
PLoS Genet. 2009 Nov;5(11):e1000732. doi: 10.1371/journal.pgen.1000732. Epub 2009 Nov 20.
3
Dynamic evolution of bz orthologous regions in the Andropogoneae and other grasses.
Plant J. 2012 Oct;72(2):212-21. doi: 10.1111/j.1365-313X.2012.05059.x. Epub 2012 Aug 1.
4
The sunflower (Helianthus annuus L.) genome reflects a recent history of biased accumulation of transposable elements.
Plant J. 2012 Oct;72(1):142-53. doi: 10.1111/j.1365-313X.2012.05072.x. Epub 2012 Jul 30.
7
Correlated evolution of LTR retrotransposons and genome size in the genus Eleocharis.
BMC Plant Biol. 2010 Nov 30;10:265. doi: 10.1186/1471-2229-10-265.
8
Retrotranspositions in orthologous regions of closely related grass species.
BMC Evol Biol. 2006 Aug 16;6:62. doi: 10.1186/1471-2148-6-62.

引用本文的文献

3
Combined analysis of transposable elements and structural variation in maize genomes reveals genome contraction outpaces expansion.
PLoS Genet. 2023 Dec 22;19(12):e1011086. doi: 10.1371/journal.pgen.1011086. eCollection 2023 Dec.
7
Karyotype asymmetry in Cuscuta L. subgenus Pachystigma reflects its repeat DNA composition.
Chromosome Res. 2022 Mar;30(1):91-107. doi: 10.1007/s10577-021-09683-0. Epub 2022 Jan 28.
8
The Dynamism of Transposon Methylation for Plant Development and Stress Adaptation.
Int J Mol Sci. 2021 Oct 21;22(21):11387. doi: 10.3390/ijms222111387.
9
The genomic ecosystem of transposable elements in maize.
PLoS Genet. 2021 Oct 14;17(10):e1009768. doi: 10.1371/journal.pgen.1009768. eCollection 2021 Oct.
10
Horizontal Transfer of LTR Retrotransposons Contributes to the Genome Diversity of .
Int J Mol Sci. 2021 Sep 28;22(19):10446. doi: 10.3390/ijms221910446.

本文引用的文献

1
Reference genome sequence of the model plant Setaria.
Nat Biotechnol. 2012 May 13;30(6):555-61. doi: 10.1038/nbt.2196.
2
The evolution of nuclear genome structure in seed plants.
Am J Bot. 2004 Oct;91(10):1709-25. doi: 10.3732/ajb.91.10.1709.
3
Transposable element origins of epigenetic gene regulation.
Curr Opin Plant Biol. 2011 Apr;14(2):156-61. doi: 10.1016/j.pbi.2011.01.003. Epub 2011 Apr 4.
4
Differentiation of the maize subgenomes by genome dominance and both ancient and ongoing gene loss.
Proc Natl Acad Sci U S A. 2011 Mar 8;108(10):4069-74. doi: 10.1073/pnas.1101368108. Epub 2011 Feb 22.
6
Mobilization of retrotransposons in synthetic allotetraploid tobacco.
New Phytol. 2010 Apr;186(1):135-47. doi: 10.1111/j.1469-8137.2009.03140.x. Epub 2010 Jan 13.
7
The B73 maize genome: complexity, diversity, and dynamics.
Science. 2009 Nov 20;326(5956):1112-5. doi: 10.1126/science.1178534.
8
Maize inbreds exhibit high levels of copy number variation (CNV) and presence/absence variation (PAV) in genome content.
PLoS Genet. 2009 Nov;5(11):e1000734. doi: 10.1371/journal.pgen.1000734. Epub 2009 Nov 20.
9
Exceptional diversity, non-random distribution, and rapid evolution of retroelements in the B73 maize genome.
PLoS Genet. 2009 Nov;5(11):e1000732. doi: 10.1371/journal.pgen.1000732. Epub 2009 Nov 20.
10
Rapid DNA loss as a counterbalance to genome expansion through retrotransposon proliferation in plants.
Proc Natl Acad Sci U S A. 2009 Oct 20;106(42):17811-6. doi: 10.1073/pnas.0904339106. Epub 2009 Oct 7.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验