Suppr超能文献

基于域自适应的肌电假肢分类器的每日精简再校准。

Reduced Daily Recalibration of Myoelectric Prosthesis Classifiers Based on Domain Adaptation.

出版信息

IEEE J Biomed Health Inform. 2016 Jan;20(1):166-76. doi: 10.1109/JBHI.2014.2380454. Epub 2014 Dec 18.

Abstract

Control scheme design based on surface electromyography (sEMG) pattern recognition has been the focus of much research on a myoelectric prosthesis (MP) technology. Due to inherent nonstationarity in sEMG signals, prosthesis systems may need to be recalibrated day after day in daily use applications; thereby, hindering MP usability. In order to reduce the recalibration time in the subsequent days following the initial training, we propose a domain adaptation (DA) framework, which automatically reuses the models trained in earlier days as input for two baseline classifiers: a polynomial classifier (PC) and a linear discriminant analysis (LDA). Two novel algorithms of DA are introduced, one for PC and the other one for LDA. Five intact-limbed subjects and two transradial-amputee subjects participated in an experiment lasting ten days, to simulate the application of a MP over multiple days. The experiment results of four methods were compared: PC-DA (PC with DA), PC-BL (baseline PC), LDA-DA (LDA with DA), and LDA-BL (baseline LDA). In a new day, the DA methods reuse nine pretrained models, which were calibrated by 40 s training data per class in nine previous days. We show that the proposed DA methods significantly outperform nonadaptive baseline methods. The improvement in classification accuracy ranges from 5.49% to 28.48%, when the recording time per class is 2 s. For example, the average classification rates of PC-BL and PC-DA are 83.70% and 92.99%, respectively, for intact-limbed subjects with a nine-motions classification task. These results indicate that DA has the potential to improve the usability of MPs based on pattern recognition, by reducing the calibration time.

摘要

基于表面肌电 (sEMG) 模式识别的控制方案设计一直是肌电假肢 (MP) 技术研究的重点。由于 sEMG 信号固有的非平稳性,假肢系统在日常使用中可能需要每天重新校准;从而阻碍了 MP 的可用性。为了减少初始训练后后续几天的重新校准时间,我们提出了一种域自适应 (DA) 框架,该框架自动将早期训练中训练的模型作为两个基线分类器的输入:多项式分类器 (PC) 和线性判别分析 (LDA)。引入了两种新的 DA 算法,一种用于 PC,另一种用于 LDA。五名完整肢体受试者和两名桡骨截肢受试者参加了为期十天的实验,以模拟多天使用 MP。比较了四种方法的实验结果:PC-DA (带 DA 的 PC)、PC-BL (基线 PC)、LDA-DA (带 DA 的 LDA) 和 LDA-BL (基线 LDA)。在新的一天,DA 方法重用了九个预训练模型,这些模型是在前九天通过每类 40 秒的训练数据校准的。我们表明,所提出的 DA 方法显著优于非自适应基线方法。当每类记录时间为 2 秒时,分类精度的提高范围为 5.49%至 28.48%。例如,对于具有九种运动分类任务的完整肢体受试者,PC-BL 和 PC-DA 的平均分类率分别为 83.70%和 92.99%。这些结果表明,DA 有可能通过减少校准时间来提高基于模式识别的 MPs 的可用性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验