文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

基于功能主成分分析方法的时间序列基因表达数据更强大的显著检验。

More powerful significant testing for time course gene expression data using functional principal component analysis approaches.

机构信息

Department of Biostatistics and Computational Biology, University of Rochester, 601 Elmwood Avenue, Rochester, NY 14642, USA.

出版信息

BMC Bioinformatics. 2013 Jan 16;14:6. doi: 10.1186/1471-2105-14-6.


DOI:10.1186/1471-2105-14-6
PMID:23323795
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC3617096/
Abstract

BACKGROUND: One of the fundamental problems in time course gene expression data analysis is to identify genes associated with a biological process or a particular stimulus of interest, like a treatment or virus infection. Most of the existing methods for this problem are designed for data with longitudinal replicates. But in reality, many time course gene experiments have no replicates or only have a small number of independent replicates. RESULTS: We focus on the case without replicates and propose a new method for identifying differentially expressed genes by incorporating the functional principal component analysis (FPCA) into a hypothesis testing framework. The data-driven eigenfunctions allow a flexible and parsimonious representation of time course gene expression trajectories, leaving more degrees of freedom for the inference compared to that using a prespecified basis. Moreover, the information of all genes is borrowed for individual gene inferences. CONCLUSION: The proposed approach turns out to be more powerful in identifying time course differentially expressed genes compared to the existing methods. The improved performance is demonstrated through simulation studies and a real data application to the Saccharomyces cerevisiae cell cycle data.

摘要

背景:在时间序列基因表达数据分析中,一个基本问题是识别与感兴趣的生物过程或特定刺激(如处理或病毒感染)相关的基因。大多数现有的此类问题的方法都是为具有纵向重复的数据集设计的。但实际上,许多时间序列基因实验没有重复,或者只有少数独立的重复。

结果:我们专注于没有重复的情况,并通过将功能主成分分析(FPCA)纳入假设检验框架,提出了一种识别差异表达基因的新方法。数据驱动的特征函数允许灵活且简约地表示时间序列基因表达轨迹,与使用预定义基相比,为推断留出了更多的自由度。此外,还可以为个体基因推断借用所有基因的信息。

结论:与现有方法相比,所提出的方法在识别时间序列差异表达基因方面更有效。通过模拟研究和对酿酒酵母细胞周期数据的实际应用,证明了该方法的性能有所提高。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8241/3617096/27082633ee2e/1471-2105-14-6-7.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8241/3617096/59b323d2e6fa/1471-2105-14-6-1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8241/3617096/3a9bed633882/1471-2105-14-6-2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8241/3617096/fbd7a945ab20/1471-2105-14-6-3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8241/3617096/79f4d2c010de/1471-2105-14-6-4.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8241/3617096/5ae6488bcbff/1471-2105-14-6-5.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8241/3617096/ec4dc877e597/1471-2105-14-6-6.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8241/3617096/27082633ee2e/1471-2105-14-6-7.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8241/3617096/59b323d2e6fa/1471-2105-14-6-1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8241/3617096/3a9bed633882/1471-2105-14-6-2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8241/3617096/fbd7a945ab20/1471-2105-14-6-3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8241/3617096/79f4d2c010de/1471-2105-14-6-4.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8241/3617096/5ae6488bcbff/1471-2105-14-6-5.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8241/3617096/ec4dc877e597/1471-2105-14-6-6.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8241/3617096/27082633ee2e/1471-2105-14-6-7.jpg

相似文献

[1]
More powerful significant testing for time course gene expression data using functional principal component analysis approaches.

BMC Bioinformatics. 2013-1-16

[2]
Statistical inference of transcriptional module-based gene networks from time course gene expression profiles by using state space models.

Bioinformatics. 2008-4-1

[3]
A method to identify differential expression profiles of time-course gene data with Fourier transformation.

BMC Bioinformatics. 2013-10-18

[4]
Partitioning of functional gene expression data using principal points.

BMC Bioinformatics. 2017-10-12

[5]
Knowledge-guided multi-scale independent component analysis for biomarker identification.

BMC Bioinformatics. 2008-10-6

[6]
Principal components analysis based methodology to identify differentially expressed genes in time-course microarray data.

BMC Bioinformatics. 2008-6-6

[7]
Multivariate curve resolution of time course microarray data.

BMC Bioinformatics. 2006-7-13

[8]
UNCLES: method for the identification of genes differentially consistently co-expressed in a specific subset of datasets.

BMC Bioinformatics. 2015-6-4

[9]
Detecting biological associations between genes based on the theory of phase synchronization.

Biosystems. 2008-5

[10]
Multiway real-time PCR gene expression profiling in yeast Saccharomyces cerevisiae reveals altered transcriptional response of ADH-genes to glucose stimuli.

BMC Genomics. 2008-4-16

引用本文的文献

[1]
Genomic and phenotypic characterization of a strain of the epidemic ST37 type from China.

Front Cell Infect Microbiol. 2024

[2]
An integrative epigenome-based strategy for unbiased functional profiling of clinical kinase inhibitors.

Mol Syst Biol. 2024-6

[3]
Longitudinal Analysis of Contrasts in Gene Expression Data.

Genes (Basel). 2023-5-24

[4]
Genomic and Phenotypic Characterization of the Nontoxigenic Clostridioides difficile Strain CCUG37785 and Demonstration of Its Therapeutic Potential for the Prevention of C. difficile Infection.

Microbiol Spectr. 2022-4-27

[5]
Identifying the dynamic gene regulatory network during latent HIV-1 reactivation using high-dimensional ordinary differential equations.

Int J Comput Biol Drug Des. 2018

[6]
Parameter Estimation and Variable Selection for Big Systems of Linear Ordinary Differential Equations: A Matrix-Based Approach.

J Am Stat Assoc. 2019

[7]
Epigenetic Profiles Reveal That ADCYAP1 Serves as Key Molecule in Gestational Diabetes Mellitus.

Comput Math Methods Med. 2019-8-14

[8]
Bioinformatics identification of potential genes and pathways in preeclampsia based on functional gene set enrichment analyses.

Exp Ther Med. 2019-9

[9]
Investigation of temporal and spatial heterogeneities of the immune responses to infection in the lung and spleen of mice via analysis and modeling of dynamic microarray gene expression data.

Infect Dis Model. 2019-6-7

[10]
Controllability and stability analysis of large transcriptomic dynamic systems for host response to influenza infection in human.

Infect Dis Model. 2016-9-13

本文引用的文献

[1]
A new gene selection procedure based on the covariance distance.

Bioinformatics. 2009-12-8

[2]
A permutation-based multiple testing method for time-course microarray experiments.

BMC Bioinformatics. 2009-10-15

[3]
Identifying temporally differentially expressed genes through functional principal components analysis.

Biostatistics. 2009-10

[4]
Detecting intergene correlation changes in microarray analysis: a new approach to gene selection.

BMC Bioinformatics. 2009-1-15

[5]
Global control of cell-cycle transcription by coupled CDK and network oscillators.

Nature. 2008-6-12

[6]
Identifying differentially expressed genes in time-course microarray experiment without replicate.

J Bioinform Comput Biol. 2007-4

[7]
Functional hierarchical models for identifying genes with different time-course expression profiles.

Biometrics. 2006-6

[8]
Significance analysis of time course microarray experiments.

Proc Natl Acad Sci U S A. 2005-9-6

[9]
A genomic view of estrogen actions in human breast cancer cells by expression profiling of the hormone-responsive transcriptome.

J Mol Endocrinol. 2004-6

[10]
Comparing the continuous representation of time-series expression profiles to identify differentially expressed genes.

Proc Natl Acad Sci U S A. 2003-9-2

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索