Suppr超能文献

相似文献

1
A new gene selection procedure based on the covariance distance.
Bioinformatics. 2010 Feb 1;26(3):348-54. doi: 10.1093/bioinformatics/btp672. Epub 2009 Dec 8.
2
Differential regulation enrichment analysis via the integration of transcriptional regulatory network and gene expression data.
Bioinformatics. 2015 Feb 15;31(4):563-71. doi: 10.1093/bioinformatics/btu672. Epub 2014 Oct 15.
3
Detecting intergene correlation changes in microarray analysis: a new approach to gene selection.
BMC Bioinformatics. 2009 Jan 15;10:20. doi: 10.1186/1471-2105-10-20.
4
Statistical methods for gene set co-expression analysis.
Bioinformatics. 2009 Nov 1;25(21):2780-6. doi: 10.1093/bioinformatics/btp502. Epub 2009 Aug 18.
5
Module-based prediction approach for robust inter-study predictions in microarray data.
Bioinformatics. 2010 Oct 15;26(20):2586-93. doi: 10.1093/bioinformatics/btq472. Epub 2010 Aug 17.
6
Discovering gene expression patterns in time course microarray experiments by ANOVA-SCA.
Bioinformatics. 2007 Jul 15;23(14):1792-800. doi: 10.1093/bioinformatics/btm251. Epub 2007 May 22.
7
Pathway analysis using random forests classification and regression.
Bioinformatics. 2006 Aug 15;22(16):2028-36. doi: 10.1093/bioinformatics/btl344. Epub 2006 Jun 29.
8
A statistical framework for differential network analysis from microarray data.
BMC Bioinformatics. 2010 Feb 19;11:95. doi: 10.1186/1471-2105-11-95.
9
Comments on: fold change rank ordering statistics: a new method for detecting differentially expressed genes.
BMC Bioinformatics. 2016 Nov 15;17(1):462. doi: 10.1186/s12859-016-1322-0.
10
Covariance thresholding to detect differentially co-expressed genes from microarray gene expression data.
J Bioinform Comput Biol. 2020 Feb;18(1):2050002. doi: 10.1142/S021972002050002X.

引用本文的文献

2
A TESTING BASED APPROACH TO THE DISCOVERY OF DIFFERENTIALLY CORRELATED VARIABLE SETS.
Ann Appl Stat. 2018 Jun;12(2):1180-1203. doi: 10.1214/17-AOAS1083. Epub 2018 Jul 28.
3
Set-based differential covariance testing for genomics.
Stat (Int Stat Inst). 2019;8(1):e235. doi: 10.1002/sta4.235. Epub 2019 Aug 6.
4
Hypothesis testing for differentially correlated features.
Biostatistics. 2016 Oct;17(4):677-91. doi: 10.1093/biostatistics/kxw013. Epub 2016 Apr 4.
5
Exploiting identifiability and intergene correlation for improved detection of differential expression.
ISRN Bioinform. 2013 Jun 3;2013:404717. doi: 10.1155/2013/404717. eCollection 2013.
6
Nonlinear dependence in the discovery of differentially expressed genes.
ISRN Bioinform. 2012 Apr 12;2012:564715. doi: 10.5402/2012/564715. eCollection 2012.
8
Fusing Gene Interaction to Improve Disease Discrimination on Classification Analysis.
Adv Genet Eng. 2012 Feb 9;1(1):1000102. doi: 10.4172/AGE.1000102.
10
An empirical Bayesian approach for identifying differential coexpression in high-throughput experiments.
Biometrics. 2012 Jun;68(2):455-65. doi: 10.1111/j.1541-0420.2011.01688.x. Epub 2011 Oct 17.

本文引用的文献

1
Antileukemic activity of valproic acid in chronic lymphocytic leukemia B cells defined by microarray analysis.
Leukemia. 2009 Dec;23(12):2281-9. doi: 10.1038/leu.2009.176. Epub 2009 Aug 27.
2
Rational combinations using HDAC inhibitors.
Clin Cancer Res. 2009 Jun 15;15(12):3970-7. doi: 10.1158/1078-0432.CCR-08-2786. Epub 2009 Jun 9.
3
A differential wiring analysis of expression data correctly identifies the gene containing the causal mutation.
PLoS Comput Biol. 2009 May;5(5):e1000382. doi: 10.1371/journal.pcbi.1000382. Epub 2009 May 1.
4
Detecting intergene correlation changes in microarray analysis: a new approach to gene selection.
BMC Bioinformatics. 2009 Jan 15;10:20. doi: 10.1186/1471-2105-10-20.
5
Testing differential expression in nonoverlapping gene pairs: a new perspective for the empirical Bayes method.
J Bioinform Comput Biol. 2008 Apr;6(2):301-16. doi: 10.1142/s0219720008003436.
6
Inhibition of histone deacetylase as a new mechanism of teratogenesis.
Birth Defects Res C Embryo Today. 2006 Dec;78(4):345-53. doi: 10.1002/bdrc.20082.
7
Some comments on instability of false discovery rate estimation.
J Bioinform Comput Biol. 2006 Oct;4(5):1057-68. doi: 10.1142/s0219720006002338.
8
Utility of correlation measures in analysis of gene expression.
NeuroRx. 2006 Jul;3(3):384-95. doi: 10.1016/j.nurx.2006.05.037.
10
Assessing stability of gene selection in microarray data analysis.
BMC Bioinformatics. 2006 Feb 1;7:50. doi: 10.1186/1471-2105-7-50.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验