Wu Leqin, Qiu Xing, Yuan Ya-Xiang, Wu Hulin
Department of Mathematics, Jinan University, Guangzhou, China.
Department of Biostatistics and Computational Biology University of Rochester, Rochester, New York, U.S.A.
J Am Stat Assoc. 2019;114(526):657-667. doi: 10.1080/01621459.2017.1423074. Epub 2018 Jul 11.
Ordinary differential equations (ODEs) are widely used to model the dynamic behavior of a complex system. Parameter estimation and variable selection for a "Big System" with linear ODEs are very challenging due to the need of nonlinear optimization in an ultra-high dimensional parameter space. In this article, we develop a parameter estimation and variable selection method based on the ideas of similarity transformation and separable least squares (SLS). Simulation studies demonstrate that the proposed matrix-based SLS method could be used to estimate the coefficient matrix more accurately and perform variable selection for a linear ODE system with thousands of dimensions and millions of parameters much better than the direct least squares (LS) method and the vector-based two-stage method that are currently available. We applied this new method to two real data sets: a yeast cell cycle gene expression data set with 30 dimensions and 930 unknown parameters and the Standard & Poor 1500 index stock price data with 1250 dimensions and 1,563,750 unknown parameters, to illustrate the utility and numerical performance of the proposed parameter estimation and variable selection method for big systems in practice.
常微分方程(ODEs)被广泛用于对复杂系统的动态行为进行建模。由于需要在超高维参数空间中进行非线性优化,对于具有线性常微分方程的“大系统”进行参数估计和变量选择极具挑战性。在本文中,我们基于相似变换和可分离最小二乘法(SLS)的思想,开发了一种参数估计和变量选择方法。仿真研究表明,所提出的基于矩阵的SLS方法能够更准确地估计系数矩阵,并且在对具有数千个维度和数百万个参数的线性常微分方程系统进行变量选择时,其性能比目前可用的直接最小二乘法(LS)和基于向量的两阶段方法要好得多。我们将这种新方法应用于两个实际数据集:一个具有30个维度和930个未知参数的酵母细胞周期基因表达数据集,以及一个具有1250个维度和1,563,750个未知参数的标准普尔1500指数股价数据集,以说明所提出的大系统参数估计和变量选择方法在实际应用中的实用性和数值性能。
J Pharmacokinet Pharmacodyn. 2022-8
J Am Stat Assoc. 2014-4-2
IEEE Trans Neural Netw Learn Syst. 2012-9
PLoS One. 2018-2-23
Proc Natl Acad Sci U S A. 2021-4-13
Comput Struct Biotechnol J. 2020-6-29
J Am Stat Assoc. 2014-4-2
SIAM Rev Soc Ind Appl Math. 2011-1-1
Nat Methods. 2011-5-27
Nature. 2011-5-12
Nat Rev Genet. 2011-1