文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

大型线性常微分方程组的参数估计与变量选择:一种基于矩阵的方法。

Parameter Estimation and Variable Selection for Big Systems of Linear Ordinary Differential Equations: A Matrix-Based Approach.

作者信息

Wu Leqin, Qiu Xing, Yuan Ya-Xiang, Wu Hulin

机构信息

Department of Mathematics, Jinan University, Guangzhou, China.

Department of Biostatistics and Computational Biology University of Rochester, Rochester, New York, U.S.A.

出版信息

J Am Stat Assoc. 2019;114(526):657-667. doi: 10.1080/01621459.2017.1423074. Epub 2018 Jul 11.


DOI:10.1080/01621459.2017.1423074
PMID:34385718
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC8357247/
Abstract

Ordinary differential equations (ODEs) are widely used to model the dynamic behavior of a complex system. Parameter estimation and variable selection for a "Big System" with linear ODEs are very challenging due to the need of nonlinear optimization in an ultra-high dimensional parameter space. In this article, we develop a parameter estimation and variable selection method based on the ideas of similarity transformation and separable least squares (SLS). Simulation studies demonstrate that the proposed matrix-based SLS method could be used to estimate the coefficient matrix more accurately and perform variable selection for a linear ODE system with thousands of dimensions and millions of parameters much better than the direct least squares (LS) method and the vector-based two-stage method that are currently available. We applied this new method to two real data sets: a yeast cell cycle gene expression data set with 30 dimensions and 930 unknown parameters and the Standard & Poor 1500 index stock price data with 1250 dimensions and 1,563,750 unknown parameters, to illustrate the utility and numerical performance of the proposed parameter estimation and variable selection method for big systems in practice.

摘要

常微分方程(ODEs)被广泛用于对复杂系统的动态行为进行建模。由于需要在超高维参数空间中进行非线性优化,对于具有线性常微分方程的“大系统”进行参数估计和变量选择极具挑战性。在本文中,我们基于相似变换和可分离最小二乘法(SLS)的思想,开发了一种参数估计和变量选择方法。仿真研究表明,所提出的基于矩阵的SLS方法能够更准确地估计系数矩阵,并且在对具有数千个维度和数百万个参数的线性常微分方程系统进行变量选择时,其性能比目前可用的直接最小二乘法(LS)和基于向量的两阶段方法要好得多。我们将这种新方法应用于两个实际数据集:一个具有30个维度和930个未知参数的酵母细胞周期基因表达数据集,以及一个具有1250个维度和1,563,750个未知参数的标准普尔1500指数股价数据集,以说明所提出的大系统参数估计和变量选择方法在实际应用中的实用性和数值性能。

相似文献

[1]
Parameter Estimation and Variable Selection for Big Systems of Linear Ordinary Differential Equations: A Matrix-Based Approach.

J Am Stat Assoc. 2019

[2]
Penalized Nonlinear Least Squares Estimation of Time-Varying Parameters in Ordinary Differential Equations.

J Comput Graph Stat. 2012

[3]
Inference in dynamic systems using B-splines and quasilinearized ODE penalties.

Biom J. 2016-5

[4]
Exploring Inductive Linearization for simulation and estimation with an application to the Michaelis-Menten model.

J Pharmacokinet Pharmacodyn. 2022-8

[5]
Independence screening for high dimensional nonlinear additive ODE models with applications to dynamic gene regulatory networks.

Stat Med. 2018-5-2

[6]
Parameter estimation with bio-inspired meta-heuristic optimization: modeling the dynamics of endocytosis.

BMC Syst Biol. 2011-10-11

[7]
Sparse Additive Ordinary Differential Equations for Dynamic Gene Regulatory Network Modeling.

J Am Stat Assoc. 2014-4-2

[8]
Approximate solutions to ordinary differential equations using least squares support vector machines.

IEEE Trans Neural Netw Learn Syst. 2012-9

[9]
Numerical discretization-based estimation methods for ordinary differential equation models via penalized spline smoothing with applications in biomedical research.

Biometrics. 2012-6

[10]
Using single-index ODEs to study dynamic gene regulatory network.

PLoS One. 2018-2-23

引用本文的文献

[1]
Separable Nonlinear Least-Squares Parameter Estimation for Complex Dynamic Systems.

Complexity. 2020-4-2

[2]
Inference of dynamic systems from noisy and sparse data via manifold-constrained Gaussian processes.

Proc Natl Acad Sci U S A. 2021-4-13

[3]
Integration of single-cell multi-omics for gene regulatory network inference.

Comput Struct Biotechnol J. 2020-6-29

本文引用的文献

[1]
Estimation of Ordinary Differential Equation Parameters Using Constrained Local Polynomial Regression.

Stat Sin. 2014-10

[2]
Quantifying Immune Response to Influenza Virus Infection via Multivariate Nonlinear ODE Models with Partially Observed State Variables and Time-Varying Parameters.

Stat Biosci. 2015-5-1

[3]
Sparse Additive Ordinary Differential Equations for Dynamic Gene Regulatory Network Modeling.

J Am Stat Assoc. 2014-4-2

[4]
More powerful significant testing for time course gene expression data using functional principal component analysis approaches.

BMC Bioinformatics. 2013-1-16

[5]
High Dimensional ODEs Coupled with Mixed-Effects Modeling Techniques for Dynamic Gene Regulatory Network Identification.

J Am Stat Assoc. 2011

[6]
Large-scale dynamic gene regulatory network inference combining differential equation models with local dynamic Bayesian network analysis.

Bioinformatics. 2011-8-4

[7]
ON IDENTIFIABILITY OF NONLINEAR ODE MODELS AND APPLICATIONS IN VIRAL DYNAMICS.

SIAM Rev Soc Ind Appl Math. 2011-1-1

[8]
Computational methods for transcriptome annotation and quantification using RNA-seq.

Nat Methods. 2011-5-27

[9]
Controllability of complex networks.

Nature. 2011-5-12

[10]
Network medicine: a network-based approach to human disease.

Nat Rev Genet. 2011-1

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索