Suppr超能文献

基于二维序列激光数据的无人地面车辆新型路沿检测方法

A new curb detection method for unmanned ground vehicles using 2D sequential laser data.

机构信息

College of Mechatronics & Automation, National University of Defense Technology, Changsha 410073, Hunan, China.

出版信息

Sensors (Basel). 2013 Jan 16;13(1):1102-20. doi: 10.3390/s130101102.

Abstract

Curb detection is an important research topic in environment perception, which is an essential part of unmanned ground vehicle (UGV) operations. In this paper, a new curb detection method using a 2D laser range finder in a semi-structured environment is presented. In the proposed method, firstly, a local Digital Elevation Map (DEM) is built using 2D sequential laser rangefinder data and vehicle state data in a dynamic environment and a probabilistic moving object deletion approach is proposed to cope with the effect of moving objects. Secondly, the curb candidate points are extracted based on the moving direction of the vehicle in the local DEM. Finally, the straight and curved curbs are detected by the Hough transform and the multi-model RANSAC algorithm, respectively. The proposed method can detect the curbs robustly in both static and typical dynamic environments. The proposed method has been verified in real vehicle experiments.

摘要

路缘检测是环境感知中的一个重要研究课题,是无人地面车辆(UGV)运行的重要组成部分。本文提出了一种在半结构化环境中使用二维激光测距仪的新的路缘检测方法。在该方法中,首先,使用二维连续激光测距数据和动态环境中的车辆状态数据构建局部数字高程图(DEM),并提出了一种概率移动目标删除方法来应对移动目标的影响。其次,根据车辆在局部 DEM 中的移动方向提取路缘候选点。最后,分别使用 Hough 变换和多模型 RANSAC 算法检测直线和曲线路缘。该方法可以在静态和典型动态环境中稳健地检测路缘。该方法已经在真实车辆实验中得到了验证。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0cbf/3574724/f5dfe75d51f0/sensors-13-01102f1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验