Suppr超能文献

通过自然语言处理追踪健康差距。

Tracking health disparities through natural-language processing.

机构信息

Division of Primary Care Internal Medicine, Mayo Clinic, Rochester, MN 55904, USA.

出版信息

Am J Public Health. 2013 Mar;103(3):448-9. doi: 10.2105/AJPH.2012.300943. Epub 2013 Jan 17.

Abstract

Health disparities and solutions are heterogeneous within and among racial and ethnic groups, yet existing administrative databases lack the granularity to reflect important sociocultural distinctions. We measured the efficacy of a natural-language-processing algorithm to identify a specific immigrant group. The algorithm demonstrated accuracy and precision in identifying Somali patients from the electronic medical records at a single institution. This technology holds promise to identify and track immigrants and refugees in the United States in local health care settings.

摘要

健康差异及其解决方案在不同种族和族裔群体内部和之间存在差异,但现有的行政数据库缺乏反映重要社会文化差异的粒度。我们衡量了自然语言处理算法识别特定移民群体的功效。该算法在识别单一机构电子病历中的索马里患者方面表现出了准确性和精度。这项技术有望在美国的当地医疗保健环境中识别和跟踪移民和难民。

相似文献

1
Tracking health disparities through natural-language processing.通过自然语言处理追踪健康差距。
Am J Public Health. 2013 Mar;103(3):448-9. doi: 10.2105/AJPH.2012.300943. Epub 2013 Jan 17.

引用本文的文献

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验