Suppr超能文献

二烷氧基噻二唑:一种用于面对面聚合物半导体的新型构建模块。

Dialkoxybithiazole: a new building block for head-to-head polymer semiconductors.

机构信息

Department of Chemistry and the Materials Research Center, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States.

出版信息

J Am Chem Soc. 2013 Feb 6;135(5):1986-96. doi: 10.1021/ja3120532. Epub 2013 Jan 29.

Abstract

Polymer semiconductors have received great attention for organic electronics due to the low fabrication cost offered by solution-based printing techniques. To enable the desired solubility/processability and carrier mobility, polymers are functionalized with hydrocarbon chains by strategically manipulating the alkylation patterns. Note that head-to-head (HH) linkages have traditionally been avoided because the induced backbone torsion leads to poor π-π overlap and amorphous film microstructures, and hence to low carrier mobilities. We report here the synthesis of a new building block for HH linkages, 4,4'-dialkoxy-5,5'-bithiazole (BTzOR), and its incorporation into polymers for high performance organic thin-film transistors. The small oxygen van der Waals radius and intramolecular S(thiazolyl)···O(alkoxy) attraction promote HH macromolecular architectures with extensive π-conjugation, low bandgaps (1.40-1.63 eV), and high crystallinity. In comparison to previously reported 3,3'-dialkoxy-2,2'-bithiophene (BTOR), BTzOR is a promising building block in view of thiazole geometric and electronic properties: (a) replacing (thiophene)C-H with (thiazole)N reduces steric encumbrance in -BTzOR-Ar- dyads by eliminating repulsive C-H···H-C interactions with neighboring arene units, thereby enhancing π-π overlap and film crystallinity; and (b) thiazole electron-deficiency compensates alkoxy electron-donating characteristics, thereby lowering the BTzOR polymer HOMO versus that of the BTOR analogues. Thus, the new BTzOR polymers show substantial hole mobilities (0.06-0.25 cm(2)/(V s)) in organic thin-film transistors, as well as enhanced I(on):I(off) ratios and greater ambient stability than the BTOR analogues. These geometric and electronic properties make BTzOR a promising building block for new classes of polymer semiconductors, and the synthetic route to BTzOR reported here should be adaptable to many other bithiazole-based building blocks.

摘要

聚合物半导体由于其溶液印刷技术具有低成本的制造优势,而在有机电子领域受到了广泛关注。为了实现所需的溶解性/可加工性和载流子迁移率,聚合物通过策略性地改变烷基化模式,用碳氢链进行功能化。需要注意的是,头对头(HH)键合一直以来都被避免,因为诱导的骨架扭转会导致较差的π-π重叠和非晶薄膜微结构,从而导致较低的载流子迁移率。在此,我们报告了一种新的 HH 键合构建块,即 4,4'-二甲氧基-5,5'-联噻唑(BTzOR)的合成及其在高性能有机薄膜晶体管聚合物中的应用。较小的氧范德华半径和分子内 S(噻唑基)···O(烷氧基)吸引力促进了 HH 大分子结构的形成,具有广泛的π共轭、低能带隙(1.40-1.63 eV)和高结晶度。与之前报道的 3,3'-二甲氧基-2,2'-联噻吩(BTOR)相比,BTzOR 是一种很有前途的构建块,因为噻唑的几何和电子性质:(a)用(噻唑)N 取代(噻吩)C-H,通过消除与相邻芳基单元的排斥性 C-H···H-C 相互作用,减少了 -BTzOR-Ar- 偶联物的空间位阻,从而增强了 π-π 重叠和薄膜结晶度;(b)噻唑的缺电子性补偿了烷氧基的供电子特性,从而降低了 BTzOR 聚合物的 HOMO 与 BTOR 类似物的 HOMO。因此,新的 BTzOR 聚合物在有机薄膜晶体管中表现出较大的空穴迁移率(0.06-0.25 cm(2)/(V s)),以及更高的 I(on):I(off) 比值和比 BTOR 类似物更好的环境稳定性。这些几何和电子性质使 BTzOR 成为一类新型聚合物半导体很有前途的构建块,而此处报道的 BTzOR 的合成路线应该适用于许多其他基于联噻唑的构建块。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验