Sharma Shubham, Desu Moulika, Chen Guan-Lin, Tseng Kai-Wei, Gaurav Kumar Vivek, Liu Zhe-Yu, Cheng Kuang-Hao, Pradhan Safalmani, Ranganathan Palraj, Liu Pang-Hsiao, Chiu Xiang-Ling, Tanaka Hirofumi, Chen Jyh-Chien, Chen Chin-Ti, Dai Chi-An, Wang Leeyih, Pandey Shyam S
Graduate School of Life Science and Systems Engineering, Kyushu Institute of Technology, 2-4 Hibikino, Wakamatsu, Kitakyushu, Fukuoka 808-0196, Japan.
Center for Condensed Matter Science, National Taiwan University, Taipei 10617, Taiwan.
ACS Appl Mater Interfaces. 2024 Sep 25;16(38):51229-51240. doi: 10.1021/acsami.4c08566. Epub 2024 Sep 16.
The recent past has witnessed remarkable progress in organic electronics, driven by the quest for flexible, lightweight, and cost-effective electronic devices. Semiconducting polymers (SCPs) have emerged as key materials in this field, offering unique electronic and optoelectronic properties along with mechanical flexibility. This study focuses on designing, synthesizing, and utilizing novel donor-acceptor (D-A) copolymer-based SCPs introducing a difluorothiophene moiety in the polymeric backbone. The importance of fluorine substitution for backbone planarity was verified by density functional theory calculations, comparing it with a nonfluorine substituted counterpart. Through the Unidirectional Floating Film Transfer Method (UFTM), we fabricated highly oriented thin films, resulting in increased optical anisotropy with dichroic ratios reaching 19.3 in PC20-FT thin films, one of the highest optical anisotropy observed for solution processable SCP thin films. X-ray diffraction and atomic force microscopy results validated the increase in the crystallinity and domain size with the increasing alkyl chain length. Finally, we elucidate these findings in the context of electrical applications by fabricating organic field-effect transistors revealing anisotropic charge transport achieving a promising mobility of 1.24 cmVs and mobility anisotropy of 39.5. This study offers insights into the design principles and performance optimization of SCP-based devices, paving the way for advancements in plastic electronics.
近年来,在对灵活、轻便且经济高效的电子设备的追求推动下,有机电子学取得了显著进展。半导体聚合物(SCP)已成为该领域的关键材料,兼具独特的电子和光电特性以及机械柔韧性。本研究聚焦于设计、合成并利用基于新型供体 - 受体(D - A)共聚物的SCP,在聚合物主链中引入二氟噻吩部分。通过密度泛函理论计算,将其与非氟取代的对应物进行比较,验证了氟取代对主链平面性的重要性。通过单向浮膜转移法(UFTM),我们制备了高度取向的薄膜,使得PC20 - FT薄膜的光学各向异性增加,二向色比达到19.3,这是溶液可加工SCP薄膜中观察到的最高光学各向异性之一。X射线衍射和原子力显微镜结果证实,随着烷基链长度的增加,结晶度和畴尺寸增大。最后,我们通过制造有机场效应晶体管来阐述这些在电气应用背景下的发现,该晶体管显示出各向异性电荷传输,实现了1.24 cm²V⁻¹s⁻¹的有前景迁移率和39.5的迁移率各向异性。本研究为基于SCP的器件的设计原则和性能优化提供了见解,为塑料电子学的进步铺平了道路。