Antúnez Esther, Palomino Antonio J, Marfil Rebeca, Bandera Juan P
Grupo ISIS, Departamento Tecnología Electrónica, Universidad de Málaga, Málaga, Spain.
Cogn Process. 2013 Mar;14(1):13-8. doi: 10.1007/s10339-012-0536-y. Epub 2013 Jan 18.
In biological vision systems, attention mechanisms are responsible for selecting the relevant information from the sensed field of view, so that the complete scene can be analyzed using a sequence of rapid eye saccades. In recent years, efforts have been made to imitate such attention behavior in artificial vision systems, because it allows optimizing the computational resources as they can be focused on the processing of a set of selected regions. In the framework of mobile robotics navigation, this work proposes an artificial model where attention is deployed at the level of objects (visual landmarks) and where new processes for estimating bottom-up and top-down (target-based) saliency maps are employed. Bottom-up attention is implemented through a hierarchical process, whose final result is the perceptual grouping of the image content. The hierarchical grouping is applied using a Combinatorial Pyramid that represents each level of the hierarchy by a combinatorial map. The process takes into account both image regions (faces in the map) and edges (arcs in the map). Top-down attention searches for previously detected landmarks, enabling their re-detection when the robot presumes that it is revisiting a known location. Landmarks are described by a combinatorial submap; thus, this search is conducted through an error-tolerant submap isomorphism procedure.
在生物视觉系统中,注意力机制负责从感知的视野中选择相关信息,以便能够通过一系列快速的眼球扫视来分析整个场景。近年来,人们致力于在人工视觉系统中模仿这种注意力行为,因为这样可以优化计算资源,使其能够集中于对一组选定区域的处理。在移动机器人导航的框架下,这项工作提出了一种人工模型,其中注意力部署在对象(视觉地标)层面,并采用了用于估计自下而上和自上而下(基于目标)显著图的新方法。自下而上的注意力通过一个分层过程来实现,其最终结果是对图像内容进行感知分组。分层分组使用组合金字塔来应用,该金字塔通过组合图来表示层次结构的每个级别。该过程同时考虑图像区域(图中的面)和边缘(图中的弧)。自上而下的注意力搜索先前检测到的地标,当机器人假定它正在重新访问已知位置时,能够重新检测到这些地标。地标由组合子图描述;因此,这种搜索通过一个容错的子图同构过程来进行。