Suppr超能文献

模拟任务对注意力的影响。

Modeling the influence of task on attention.

作者信息

Navalpakkam Vidhya, Itti Laurent

机构信息

Department of Computer Science, Psychology and Neuroscience Graduate Program, University of Southern California, Hedco Neuroscience Building, Room 30A, Mail Code 2520, 3641 Watt Way, Los Angeles, CA 90089-2520, USA.

出版信息

Vision Res. 2005 Jan;45(2):205-31. doi: 10.1016/j.visres.2004.07.042.

Abstract

We propose a computational model for the task-specific guidance of visual attention in real-world scenes. Our model emphasizes four aspects that are important in biological vision: determining task-relevance of an entity, biasing attention for the low-level visual features of desired targets, recognizing these targets using the same low-level features, and incrementally building a visual map of task-relevance at every scene location. Given a task definition in the form of keywords, the model first determines and stores the task-relevant entities in working memory, using prior knowledge stored in long-term memory. It attempts to detect the most relevant entity by biasing its visual attention system with the entity's learned low-level features. It attends to the most salient location in the scene, and attempts to recognize the attended object through hierarchical matching against object representations stored in long-term memory. It updates its working memory with the task-relevance of the recognized entity and updates a topographic task-relevance map with the location and relevance of the recognized entity. The model is tested on three types of tasks: single-target detection in 343 natural and synthetic images, where biasing for the target accelerates target detection over twofold on average; sequential multiple-target detection in 28 natural images, where biasing, recognition, working memory and long term memory contribute to rapidly finding all targets; and learning a map of likely locations of cars from a video clip filmed while driving on a highway. The model's performance on search for single features and feature conjunctions is consistent with existing psychophysical data. These results of our biologically-motivated architecture suggest that the model may provide a reasonable approximation to many brain processes involved in complex task-driven visual behaviors.

摘要

我们提出了一种用于在现实场景中进行特定任务视觉注意力引导的计算模型。我们的模型强调了生物视觉中重要的四个方面:确定实体与任务的相关性、对期望目标的低级视觉特征进行注意力偏向、使用相同的低级特征识别这些目标,以及在每个场景位置逐步构建任务相关性的视觉地图。给定以关键词形式呈现的任务定义,该模型首先利用存储在长期记忆中的先验知识,在工作记忆中确定并存储与任务相关的实体。它通过用实体的已学习低级特征对其视觉注意力系统进行偏向,来尝试检测最相关实的体。它关注场景中最显著的位置,并尝试通过与存储在长期记忆中的对象表示进行分层匹配来识别被关注的对象。它用已识别实体的任务相关性更新其工作记忆,并用已识别实体的位置和相关性更新地形任务相关性地图。该模型在三种类型的任务上进行了测试:在343张自然和合成图像中进行单目标检测,其中对目标的偏向平均使目标检测速度加快两倍以上;在28张自然图像中进行顺序多目标检测,其中偏向、识别、工作记忆和长期记忆有助于快速找到所有目标;以及从在高速公路上行驶时拍摄的视频片段中学习汽车可能位置的地图。该模型在搜索单个特征和特征组合方面的性能与现有的心理物理学数据一致。我们这种受生物启发的架构所得到的这些结果表明,该模型可能为参与复杂任务驱动视觉行为的许多大脑过程提供合理的近似。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验