Office of eHealth Research and Business, Seoul National University Bundang Hospital, Seongnam, Republic of Korea.
Department of Pathology and Translational Medicine, Seoul National University Bundang Hospital, Seongnam, Republic of Korea.
J Med Internet Res. 2020 Dec 9;22(12):e18526. doi: 10.2196/18526.
Common data models (CDMs) help standardize electronic health record data and facilitate outcome analysis for observational and longitudinal research. An analysis of pathology reports is required to establish fundamental information infrastructure for data-driven colon cancer research. The Observational Medical Outcomes Partnership (OMOP) CDM is used in distributed research networks for clinical data; however, it requires conversion of free text-based pathology reports into the CDM's format. There are few use cases of representing cancer data in CDM.
In this study, we aimed to construct a CDM database of colon cancer-related pathology with natural language processing (NLP) for a research platform that can utilize both clinical and omics data. The essential text entities from the pathology reports are extracted, standardized, and converted to the OMOP CDM format in order to utilize the pathology data in cancer research.
We extracted clinical text entities, mapped them to the standard concepts in the Observational Health Data Sciences and Informatics vocabularies, and built databases and defined relations for the CDM tables. Major clinical entities were extracted through NLP on pathology reports of surgical specimens, immunohistochemical studies, and molecular studies of colon cancer patients at a tertiary general hospital in South Korea. Items were extracted from each report using regular expressions in Python. Unstructured data, such as text that does not have a pattern, were handled with expert advice by adding regular expression rules. Our own dictionary was used for normalization and standardization to deal with biomarker and gene names and other ungrammatical expressions. The extracted clinical and genetic information was mapped to the Logical Observation Identifiers Names and Codes databases and the Systematized Nomenclature of Medicine (SNOMED) standard terminologies recommended by the OMOP CDM. The database-table relationships were newly defined through SNOMED standard terminology concepts. The standardized data were inserted into the CDM tables. For evaluation, 100 reports were randomly selected and independently annotated by a medical informatics expert and a nurse.
We examined and standardized 1848 immunohistochemical study reports, 3890 molecular study reports, and 12,352 pathology reports of surgical specimens (from 2017 to 2018). The constructed and updated database contained the following extracted colorectal entities: (1) NOTE_NLP, (2) MEASUREMENT, (3) CONDITION_OCCURRENCE, (4) SPECIMEN, and (5) FACT_RELATIONSHIP of specimen with condition and measurement.
This study aimed to prepare CDM data for a research platform to take advantage of all omics clinical and patient data at Seoul National University Bundang Hospital for colon cancer pathology. A more sophisticated preparation of the pathology data is needed for further research on cancer genomics, and various types of text narratives are the next target for additional research on the use of data in the CDM.
通用数据模型(CDM)有助于标准化电子健康记录数据,并为观察性和纵向研究的结果分析提供便利。需要对病理报告进行分析,以建立用于数据驱动的结肠癌研究的基本信息基础设施。观察性医疗成果合作组织(OMOP)CDM 用于临床数据的分布式研究网络;但是,它需要将基于文本的病理报告转换为 CDM 的格式。在 CDM 中表示癌症数据的用例很少。
在这项研究中,我们旨在构建一个基于自然语言处理(NLP)的结肠癌相关病理学 CDM 数据库,该数据库可用于利用临床和组学数据的研究平台。从病理报告中提取、标准化并转换为 OMOP CDM 格式的基本文本实体,以便在癌症研究中利用病理数据。
我们从手术标本、免疫组织化学研究和韩国一家三级综合医院的结肠癌患者的分子研究的病理报告中提取临床文本实体,将其映射到观察性健康数据科学和信息学词汇表中的标准概念,并为 CDM 表构建数据库和定义关系。使用 Python 中的正则表达式从每个报告中提取主要临床实体。使用专家建议添加正则表达式规则来处理无模式的非结构化数据。使用我们自己的字典进行规范化和标准化,以处理生物标志物和基因名称以及其他不合语法的表达。提取的临床和遗传信息被映射到逻辑观察标识符名称和代码数据库以及 OMOP CDM 推荐的系统命名法医学术语(SNOMED)标准术语。通过 SNOMED 标准术语概念新定义了数据库-表关系。将标准化数据插入 CDM 表中。为了评估,随机选择了 100 份报告,并由医学信息学专家和护士独立进行注释。
我们检查并标准化了 1848 份免疫组织化学研究报告、3890 份分子研究报告和 12352 份手术标本病理报告(来自 2017 年至 2018 年)。构建和更新的数据库包含以下提取的结直肠实体:(1)NOTE_NLP、(2)MEASUREMENT、(3)CONDITION_OCCURRENCE、(4)SPECIMEN 和(5)与条件和测量相关的标本的 FACT_RELATIONSHIP。
本研究旨在为研究平台准备 CDM 数据,以充分利用首尔国立大学盆唐医院结肠癌病理的所有组学临床和患者数据。需要对病理数据进行更复杂的准备,以进一步研究癌症基因组学,并且各种类型的文本叙述是在 CDM 中使用数据的进一步研究的下一个目标。