Graduate Program in Biophysics, University of Wisconsin, Madison, Wisconsin, USA.
Biophys J. 2013 Jan 8;104(1):117-27. doi: 10.1016/j.bpj.2012.11.3812.
Using both atomistic and coarse-grained (CG) models, we compute the three-dimensional stress field around a gramicidin A (gA) dimer in lipid bilayers that feature different degrees of negative hydrophobic mismatch. The general trends in the computed stress field are similar at the atomistic and CG levels, supporting the use of the CG model for analyzing the mechanical features of protein/lipid/water interfaces. The calculations reveal that the stress field near the protein-lipid interface exhibits a layered structure with both significant repulsive and attractive regions, with the magnitude of the stress reaching 1000 bar in certain regions. Analysis of density profiles and stress field distributions helps highlight the Trp residues at the protein/membrane/water interface as mechanical anchors, suggesting that similar analysis is useful for identifying tension sensors in other membrane proteins, especially membrane proteins involved in mechanosensation. This work fosters a connection between microscopic and continuum mechanics models for proteins in complex environments and makes it possible to test the validity of assumptions commonly made in continuum mechanics models for membrane mediated processes. For example, using the calculated stress field, we estimate the free energy of membrane deformation induced by the hydrophobic mismatch, and the results for regions beyond the annular lipids are in general consistent with relevant experimental data and previous theoretical estimates using elasticity theory. On the other hand, the assumptions of homogeneous material properties for the membrane and a bilayer thickness at the protein/lipid interface being independent of lipid type (e.g., tail length) appear to be oversimplified, highlighting the importance of annular lipids of membrane proteins. Finally, the stress field analysis makes it clear that the effect of even rather severe hydrophobic mismatch propagates to only about two to three lipid layers, thus putting a limit on the range of cooperativity between membrane proteins in crowded cellular membranes.
我们使用原子模型和粗粒化(CG)模型,计算了在具有不同负疏水失配度的脂质双层中,格兰菌素 A(gA)二聚体周围的三维应力场。在原子和 CG 水平上,计算得到的应力场的总体趋势相似,支持使用 CG 模型来分析蛋白质/脂质/水界面的力学特性。计算结果表明,在蛋白质-脂质界面附近的应力场呈现出分层结构,具有显著的排斥和吸引区域,在某些区域,应力达到 1000 巴。对密度分布和应力场分布的分析有助于突出蛋白质/膜/水界面处的色氨酸残基作为机械锚点,这表明类似的分析对于识别其他膜蛋白中的张力传感器(尤其是参与机械感觉的膜蛋白)是有用的。这项工作促进了复杂环境中蛋白质的微观和连续力学模型之间的联系,并使得测试在连续力学模型中对膜介导过程的常见假设的有效性成为可能。例如,我们使用计算得到的应力场来估计疏水失配引起的膜变形的自由能,并且对于超出环形脂质的区域的结果通常与相关的实验数据和以前使用弹性理论的理论估计一致。另一方面,膜的均匀材料性质的假设和蛋白质/脂质界面处的双层厚度独立于脂质类型(例如,尾部长度)的假设似乎过于简单化,突出了膜蛋白中环形脂质的重要性。最后,应力场分析清楚地表明,即使是相当严重的疏水失配的影响也只能传播到大约两个到三个脂质层,从而限制了拥挤细胞膜中膜蛋白之间的协同作用范围。