Suppr超能文献

用于确定蛋白质诱导膜变形的新连续介质方法。

New Continuum Approaches for Determining Protein-Induced Membrane Deformations.

作者信息

Argudo David, Bethel Neville P, Marcoline Frank V, Wolgemuth Charles W, Grabe Michael

机构信息

Cardiovascular Research Institute, Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, California.

Departments of Molecular and Cellular Biology and Physics, University of Arizona, Tucson, Arizona.

出版信息

Biophys J. 2017 May 23;112(10):2159-2172. doi: 10.1016/j.bpj.2017.03.040.

Abstract

The influence of the membrane on transmembrane proteins is central to a number of biological phenomena, notably the gating of stretch activated ion channels. Conversely, membrane proteins can influence the bilayer, leading to the stabilization of particular membrane shapes, topological changes that occur during vesicle fission and fusion, and shape-dependent protein aggregation. Continuum elastic models of the membrane have been widely used to study protein-membrane interactions. These mathematical approaches produce physically interpretable membrane shapes, energy estimates for the cost of deformation, and a snapshot of the equilibrium configuration. Moreover, elastic models are much less computationally demanding than fully atomistic and coarse-grained simulation methodologies; however, it has been argued that continuum models cannot reproduce the distortions observed in fully atomistic molecular dynamics simulations. We suggest that this failure can be overcome by using chemically and geometrically accurate representations of the protein. Here, we present a fast and reliable hybrid continuum-atomistic model that couples the protein to the membrane. We show that the model is in excellent agreement with fully atomistic simulations of the ion channel gramicidin embedded in a POPC membrane. Our continuum calculations not only reproduce the membrane distortions produced by the channel but also accurately determine the channel's orientation. Finally, we use our method to investigate the role of membrane bending around the charged voltage sensors of the transient receptor potential cation channel TRPV1. We find that membrane deformation significantly stabilizes the energy of insertion of TRPV1 by exposing charged residues on the S4 segment to solution.

摘要

膜对跨膜蛋白的影响是许多生物学现象的核心,尤其是拉伸激活离子通道的门控。相反,膜蛋白可以影响双层膜,导致特定膜形状的稳定、囊泡裂变和融合过程中发生的拓扑变化以及形状依赖性蛋白聚集。膜的连续弹性模型已被广泛用于研究蛋白 - 膜相互作用。这些数学方法产生了具有物理可解释性的膜形状、变形成本的能量估计以及平衡构型的快照。此外,弹性模型在计算上比完全原子和粗粒度模拟方法要求低得多;然而,有人认为连续模型无法重现完全原子分子动力学模拟中观察到的扭曲。我们认为,通过使用化学和几何上准确的蛋白表示可以克服这种不足。在这里,我们提出了一种快速且可靠的混合连续 - 原子模型,该模型将蛋白与膜耦合。我们表明,该模型与嵌入在POPC膜中的离子通道短杆菌肽的完全原子模拟结果非常吻合。我们的连续计算不仅重现了通道产生的膜扭曲,还准确地确定了通道的方向。最后,我们使用我们的方法研究膜围绕瞬时受体电位阳离子通道TRPV1的带电电压传感器弯曲的作用。我们发现,膜变形通过将S4段上的带电残基暴露于溶液中,显著稳定了TRPV1插入的能量。

相似文献

1
New Continuum Approaches for Determining Protein-Induced Membrane Deformations.
Biophys J. 2017 May 23;112(10):2159-2172. doi: 10.1016/j.bpj.2017.03.040.
2
Continuum descriptions of membranes and their interaction with proteins: Towards chemically accurate models.
Biochim Biophys Acta. 2016 Jul;1858(7 Pt B):1619-34. doi: 10.1016/j.bbamem.2016.02.003. Epub 2016 Feb 4.
3
Quantitative Characterization of Protein-Lipid Interactions by Free Energy Simulation between Binary Bilayers.
J Chem Theory Comput. 2019 Nov 12;15(11):6491-6503. doi: 10.1021/acs.jctc.9b00815. Epub 2019 Oct 14.
4
A continuum method for determining membrane protein insertion energies and the problem of charged residues.
J Gen Physiol. 2008 Jun;131(6):563-73. doi: 10.1085/jgp.200809959. Epub 2008 May 12.
5
Gramicidin A Channel Formation Induces Local Lipid Redistribution II: A 3D Continuum Elastic Model.
Biophys J. 2017 Mar 28;112(6):1198-1213. doi: 10.1016/j.bpj.2017.01.035.
7
The importance of membrane defects-lessons from simulations.
Acc Chem Res. 2014 Aug 19;47(8):2244-51. doi: 10.1021/ar4002729. Epub 2014 Jun 3.
9
A one-dimensional continuum elastic model for membrane-embedded gramicidin dimer dissociation.
PLoS One. 2011 Feb 4;6(2):e15563. doi: 10.1371/journal.pone.0015563.

引用本文的文献

1
Predicting protein curvature sensing across membrane compositions with a bilayer continuum model.
bioRxiv. 2024 Dec 21:2024.01.15.575755. doi: 10.1101/2024.01.15.575755.
3
TRPV1-dependent NKCC1 activation in mouse lens involves integrin and the tubulin cytoskeleton.
J Cell Physiol. 2024 Nov;239(11):e31369. doi: 10.1002/jcp.31369. Epub 2024 Jul 16.
4
Membrane free-energy landscapes derived from atomistic dynamics explain nonuniversal cholesterol-induced stiffening.
PNAS Nexus. 2023 Aug 17;2(8):pgad269. doi: 10.1093/pnasnexus/pgad269. eCollection 2023 Aug.
5
Machine Learning-Driven Multiscale Modeling: Bridging the Scales with a Next-Generation Simulation Infrastructure.
J Chem Theory Comput. 2023 May 9;19(9):2658-2675. doi: 10.1021/acs.jctc.2c01018. Epub 2023 Apr 19.
7
Mem3DG: Modeling membrane mechanochemical dynamics in 3D using discrete differential geometry.
Biophys Rep (N Y). 2022 Sep 14;2(3). doi: 10.1016/j.bpr.2022.100062. Epub 2022 Jun 15.
9
Membrane-Mediated Interactions Between Protein Inclusions.
Front Mol Biosci. 2021 Dec 22;8:811711. doi: 10.3389/fmolb.2021.811711. eCollection 2021.
10
Value of models for membrane budding.
Curr Opin Cell Biol. 2021 Aug;71:38-45. doi: 10.1016/j.ceb.2021.01.011. Epub 2021 Mar 8.

本文引用的文献

1
Pre-transition effects mediate forces of assembly between transmembrane proteins.
Elife. 2016 Feb 24;5:e13150. doi: 10.7554/eLife.13150.
2
Continuum descriptions of membranes and their interaction with proteins: Towards chemically accurate models.
Biochim Biophys Acta. 2016 Jul;1858(7 Pt B):1619-34. doi: 10.1016/j.bbamem.2016.02.003. Epub 2016 Feb 4.
3
Architecture and Function of Mechanosensitive Membrane Protein Lattices.
Sci Rep. 2016 Jan 14;6:19214. doi: 10.1038/srep19214.
4
CHARMM-GUI Input Generator for NAMD, GROMACS, AMBER, OpenMM, and CHARMM/OpenMM Simulations Using the CHARMM36 Additive Force Field.
J Chem Theory Comput. 2016 Jan 12;12(1):405-13. doi: 10.1021/acs.jctc.5b00935. Epub 2015 Dec 3.
5
Mechanical properties of lipid bilayers from molecular dynamics simulation.
Chem Phys Lipids. 2015 Nov;192:60-74. doi: 10.1016/j.chemphyslip.2015.07.014. Epub 2015 Jul 31.
6
Membrane Protein Properties Revealed through Data-Rich Electrostatics Calculations.
Structure. 2015 Aug 4;23(8):1526-1537. doi: 10.1016/j.str.2015.05.014. Epub 2015 Jun 25.
7
Bovine F1Fo ATP synthase monomers bend the lipid bilayer in 2D membrane crystals.
Elife. 2015 Mar 27;4:e06119. doi: 10.7554/eLife.06119.
8
Directional interactions and cooperativity between mechanosensitive membrane proteins.
Europhys Lett. 2013 Mar;101(6):68002p1-68002p6. doi: 10.1209/0295-5075/101/68002.
9
Determination of biomembrane bending moduli in fully atomistic simulations.
J Am Chem Soc. 2014 Oct 1;136(39):13582-5. doi: 10.1021/ja507910r. Epub 2014 Sep 16.
10
Fluid lipid membranes: from differential geometry to curvature stresses.
Chem Phys Lipids. 2015 Jan;185:11-45. doi: 10.1016/j.chemphyslip.2014.05.001. Epub 2014 May 13.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验