Suppr超能文献

在酸性矿山排水的宏基因组芯片中发现 Rubisco 基因簇。

RubisCO gene clusters found in a metagenome microarray from acid mine drainage.

机构信息

School of Mineral Processing and Bioengineering, Central South University, Changsha, People's Republic of China.

出版信息

Appl Environ Microbiol. 2013 Mar;79(6):2019-26. doi: 10.1128/AEM.03400-12. Epub 2013 Jan 18.

Abstract

The enzyme responsible for carbon dioxide fixation in the Calvin cycle, ribulose-1,5-bisphosphate carboxylase/oxygenase (RubisCO), is always detected as a phylogenetic marker to analyze the distribution and activity of autotrophic bacteria. However, such an approach provides no indication as to the significance of genomic content and organization. Horizontal transfers of RubisCO genes occurring in eubacteria and plastids may seriously affect the credibility of this approach. Here, we presented a new method to analyze the diversity and genomic content of RubisCO genes in acid mine drainage (AMD). A metagenome microarray containing 7,776 large-insertion fosmids was constructed to quickly screen genome fragments containing RubisCO form I large-subunit genes (cbbL). Forty-six cbbL-containing fosmids were detected, and six fosmids were fully sequenced. To evaluate the reliability of the metagenome microarray and understand the microbial community in AMD, the diversities of cbbL and the 16S rRNA gene were analyzed. Fosmid sequences revealed that the form I RubisCO gene cluster could be subdivided into form IA and IB RubisCO gene clusters in AMD, because of significant divergences in molecular phylogenetics and conservative genomic organization. Interestingly, the form I RubisCO gene cluster coexisted with the form II RubisCO gene cluster in one fosmid genomic fragment. Phylogenetic analyses revealed that horizontal transfers of RubisCO genes may occur widely in AMD, which makes the evolutionary history of RubisCO difficult to reconcile with organismal phylogeny.

摘要

卡尔文循环中负责固定二氧化碳的酶,核酮糖-1,5-二磷酸羧化酶/加氧酶(RubisCO),一直被用作分析自养细菌分布和活性的系统发育标记物。然而,这种方法并不能说明基因组内容和组织的重要性。真细菌和质体中 RubisCO 基因的水平转移可能会严重影响这种方法的可信度。在这里,我们提出了一种新的方法来分析酸性矿山排水(AMD)中 RubisCO 基因的多样性和基因组内容。构建了一个包含 7776 个大片段插入性 fosmid 的宏基因组微阵列,用于快速筛选含有 RubisCO 形式 I 大亚基基因(cbbL)的基因组片段。检测到 46 个含有 cbbL 的 fosmid,并对 6 个 fosmid 进行了全序列测序。为了评估宏基因组微阵列的可靠性并了解 AMD 中的微生物群落,分析了 cbbL 和 16S rRNA 基因的多样性。fosmid 序列表明,AMD 中的形式 I RubisCO 基因簇可细分为形式 IA 和 IB RubisCO 基因簇,因为在分子系统发育和保守基因组组织方面存在显著差异。有趣的是,形式 I RubisCO 基因簇与形式 II RubisCO 基因簇共存于一个 fosmid 基因组片段中。系统发育分析表明,RubisCO 基因的水平转移可能广泛存在于 AMD 中,这使得 RubisCO 的进化历史难以与生物系统发育相协调。

相似文献

1
RubisCO gene clusters found in a metagenome microarray from acid mine drainage.
Appl Environ Microbiol. 2013 Mar;79(6):2019-26. doi: 10.1128/AEM.03400-12. Epub 2013 Jan 18.
6
Phylogeny and evolution of the family Ectothiorhodospiraceae based on comparison of 16S rRNA, cbbL and nifH gene sequences.
Int J Syst Evol Microbiol. 2007 Oct;57(Pt 10):2387-2398. doi: 10.1099/ijs.0.65041-0.
7
Phylogenetic diversity of ribulose-1,5-bisphosphate carboxylase/oxygenase large-subunit genes from deep-sea microorganisms.
Appl Environ Microbiol. 2001 Apr;67(4):1751-65. doi: 10.1128/AEM.67.4.1751-1765.2001.
8
Rampant horizontal transfer and duplication of rubisco genes in eubacteria and plastids.
Mol Biol Evol. 1996 Jul;13(6):873-82. doi: 10.1093/oxfordjournals.molbev.a025647.
10
Composition of archaeal, bacterial, and eukaryal RuBisCO genotypes in three Western Pacific arc hydrothermal vent systems.
Extremophiles. 2007 Jan;11(1):191-202. doi: 10.1007/s00792-006-0025-2. Epub 2006 Oct 6.

引用本文的文献

2
Wide range of metabolic adaptations to the acquisition of the Calvin cycle revealed by comparison of microbial genomes.
PLoS Comput Biol. 2021 Feb 8;17(2):e1008742. doi: 10.1371/journal.pcbi.1008742. eCollection 2021 Feb.
3
Acid Mine Drainage as Habitats for Distinct Microbiomes: Current Knowledge in the Era of Molecular and Omic Technologies.
Curr Microbiol. 2020 Apr;77(4):657-674. doi: 10.1007/s00284-019-01771-z. Epub 2019 Sep 21.
4
Effect of CO Concentration on Uptake and Assimilation of Inorganic Carbon in the Extreme Acidophile .
Front Microbiol. 2019 Apr 4;10:603. doi: 10.3389/fmicb.2019.00603. eCollection 2019.
6
Microbial Carbonic Anhydrases in Biomimetic Carbon Sequestration for Mitigating Global Warming: Prospects and Perspectives.
Front Microbiol. 2017 Aug 25;8:1615. doi: 10.3389/fmicb.2017.01615. eCollection 2017.
7
RubisCO selection using the vigorously aerobic and metabolically versatile bacterium Ralstonia eutropha.
FEBS J. 2016 Aug;283(15):2869-80. doi: 10.1111/febs.13774. Epub 2016 Jun 27.
9
Functional metagenomic selection of ribulose 1, 5-bisphosphate carboxylase/oxygenase from uncultivated bacteria.
Environ Microbiol. 2016 Apr;18(4):1187-99. doi: 10.1111/1462-2920.13138. Epub 2016 Jan 21.

本文引用的文献

1
Evolution and diversity of CO2 concentrating mechanisms in cyanobacteria.
Funct Plant Biol. 2002 Apr;29(3):161-173. doi: 10.1071/PP01213.
5
Acidithiobacillus ferrooxidans metabolism: from genome sequence to industrial applications.
BMC Genomics. 2008 Dec 11;9:597. doi: 10.1186/1471-2164-9-597.
6
Protein-based organelles in bacteria: carboxysomes and related microcompartments.
Nat Rev Microbiol. 2008 Sep;6(9):681-91. doi: 10.1038/nrmicro1913.
7
A probabilistic model of local sequence alignment that simplifies statistical significance estimation.
PLoS Comput Biol. 2008 May 30;4(5):e1000069. doi: 10.1371/journal.pcbi.1000069.
8
Metagenome microarray for screening of fosmid clones containing specific genes.
FEMS Microbiol Lett. 2008 Jul;284(1):28-34. doi: 10.1111/j.1574-6968.2008.01180.x. Epub 2008 May 5.
9
Structure and metal exchange in the cadmium carbonic anhydrase of marine diatoms.
Nature. 2008 Mar 6;452(7183):56-61. doi: 10.1038/nature06636.
10
The RAST Server: rapid annotations using subsystems technology.
BMC Genomics. 2008 Feb 8;9:75. doi: 10.1186/1471-2164-9-75.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验