Suppr超能文献

利用好氧性强且代谢功能多样的真养产碱杆菌选择核酮糖-1,5-二磷酸羧化酶/加氧酶。

RubisCO selection using the vigorously aerobic and metabolically versatile bacterium Ralstonia eutropha.

作者信息

Satagopan Sriram, Tabita F Robert

机构信息

Department of Microbiology, The Ohio State University, Columbus, OH, USA.

出版信息

FEBS J. 2016 Aug;283(15):2869-80. doi: 10.1111/febs.13774. Epub 2016 Jun 27.

Abstract

UNLABELLED

Recapturing atmospheric CO2 is key to reducing global warming and increasing biological carbon availability. Ralstonia eutropha is a biotechnologically useful aerobic bacterium that uses the Calvin-Benson-Bassham (CBB) cycle and the enzyme ribulose 1,5-bisphosphate carboxylase/oxygenase (RubisCO) for CO2 utilization, suggesting that it may be a useful host to bioselect RubisCO molecules with improved CO2 -capture capabilities. A host strain of R. eutropha was constructed for this purpose after deleting endogenous genes encoding two related RubisCOs. This strain could be complemented for CO2 -dependent growth by introducing native or heterologous RubisCO genes. Mutagenesis and suppressor selection identified amino acid substitutions in a hydrophobic region that specifically influences RubisCO's interaction with its substrates, particularly O2 , which competes with CO2 at the active site. Unlike most RubisCOs, the R. eutropha enzyme has evolved to retain optimal CO2 -fixation rates in a fast-growing host, despite the presence of high levels of competing O2 . Yet its structure-function properties resemble those of several commonly found RubisCOs, including the higher plant enzymes, allowing strategies to engineer analogous enzymes. Because R. eutropha can be cultured rapidly under harsh environmental conditions (e.g., with toxic industrial flue gas), in the presence of near saturation levels of oxygen, artificial selection and directed evolution studies in this organism could potentially impact efforts toward improving RubisCO-dependent biological CO2 utilization in aerobic environments.

ENZYMES

d-ribulose 1,5-bisphosphate carboxylase/oxygenase, EC 4.1.1.39; phosphoribulokinase, EC 2.7.1.19.

摘要

未标记

捕获大气中的二氧化碳是减少全球变暖及增加生物碳可利用性的关键。真养产碱菌是一种具有生物技术用途的需氧细菌,它利用卡尔文-本森-巴斯姆(CBB)循环和1,5-二磷酸核酮糖羧化酶/加氧酶(RubisCO)来利用二氧化碳,这表明它可能是一个用于生物筛选具有改进二氧化碳捕获能力的RubisCO分子的有用宿主。为此,在删除编码两种相关RubisCO的内源基因后构建了真养产碱菌的宿主菌株。通过引入天然或异源RubisCO基因,该菌株可在依赖二氧化碳的情况下生长。诱变和抑制子筛选确定了疏水区域中的氨基酸取代,该区域特异性影响RubisCO与其底物的相互作用,特别是与在活性位点与二氧化碳竞争的氧气的相互作用。与大多数RubisCO不同,尽管存在高水平的竞争性氧气,但真养产碱菌的酶已进化到在快速生长的宿主中保持最佳二氧化碳固定率。然而,其结构-功能特性类似于几种常见的RubisCO,包括高等植物的酶,这使得设计类似酶的策略成为可能。由于真养产碱菌可以在恶劣环境条件下(例如,与有毒工业废气一起)、在接近饱和水平的氧气存在下快速培养,因此在这种生物体中进行人工选择和定向进化研究可能会对改善需氧环境中依赖RubisCO的生物二氧化碳利用的努力产生潜在影响。

1,5-二磷酸核酮糖羧化酶/加氧酶,EC 4.1.1.39;磷酸核酮糖激酶,EC 2.7.1.19。

相似文献

1
RubisCO selection using the vigorously aerobic and metabolically versatile bacterium Ralstonia eutropha.
FEBS J. 2016 Aug;283(15):2869-80. doi: 10.1111/febs.13774. Epub 2016 Jun 27.
6
Structural Perturbations of Form II RuBisCO Mutant Enzymes That Affect CO Fixation.
Biochemistry. 2019 Sep 17;58(37):3880-3892. doi: 10.1021/acs.biochem.9b00617. Epub 2019 Sep 3.
8
The reliance of glycerol utilization by Cupriavidus necator on CO fixation and improved glycerol catabolism.
Appl Microbiol Biotechnol. 2022 Apr;106(7):2541-2555. doi: 10.1007/s00253-022-11842-0. Epub 2022 Mar 24.
10
Rubisco Function, Evolution, and Engineering.
Annu Rev Biochem. 2023 Jun 20;92:385-410. doi: 10.1146/annurev-biochem-040320-101244. Epub 2023 Apr 26.

引用本文的文献

1
Directed Evolution of an Ultra-Fast Rubisco from a Semi-Anaerobic Environment Imparts Oxygen Resistance.
bioRxiv. 2025 May 5:2025.02.17.638297. doi: 10.1101/2025.02.17.638297.
2
In vivo directed evolution of an ultrafast Rubisco from a semianaerobic environment imparts oxygen resistance.
Proc Natl Acad Sci U S A. 2025 Jul 8;122(27):e2505083122. doi: 10.1073/pnas.2505083122. Epub 2025 Jun 30.
3
Synthetic Genetic Elements Enable Rapid Characterization of Inorganic Carbon Uptake Systems in H16.
ACS Synth Biol. 2025 Mar 21;14(3):943-953. doi: 10.1021/acssynbio.4c00869. Epub 2025 Mar 6.
4
Prospects for engineering and for the autotrophic production of 2,3-butanediol from CO and H.
Eng Microbiol. 2023 Jan 10;3(2):100074. doi: 10.1016/j.engmic.2023.100074. eCollection 2023 Jun.
5
Unlocking the potential of Cupriavidus necator H16 as a platform for bioproducts production from carbon dioxide.
World J Microbiol Biotechnol. 2024 Nov 22;40(12):389. doi: 10.1007/s11274-024-04200-x.
6
Stable Platform for Mevalonate Bioproduction from CO.
ACS Sustain Chem Eng. 2024 Aug 26;12(36):13486-13499. doi: 10.1021/acssuschemeng.4c03561. eCollection 2024 Sep 9.
7
Engineering Rubisco to enhance CO utilization.
Synth Syst Biotechnol. 2023 Dec 27;9(1):55-68. doi: 10.1016/j.synbio.2023.12.006. eCollection 2024 Mar.
8
A native phosphoglycolate salvage pathway of the synthetic autotrophic yeast .
Microlife. 2023 Dec 11;5:uqad046. doi: 10.1093/femsml/uqad046. eCollection 2024.
9
Trends in Research and Development for CO Capture and Sequestration.
ACS Omega. 2023 Mar 23;8(13):11643-11664. doi: 10.1021/acsomega.2c05070. eCollection 2023 Apr 4.
10

本文引用的文献

1
RubisCO of a nucleoside pathway known from Archaea is found in diverse uncultivated phyla in bacteria.
ISME J. 2016 Nov;10(11):2702-2714. doi: 10.1038/ismej.2016.53. Epub 2016 May 3.
3
Functional metagenomic selection of ribulose 1, 5-bisphosphate carboxylase/oxygenase from uncultivated bacteria.
Environ Microbiol. 2016 Apr;18(4):1187-99. doi: 10.1111/1462-2920.13138. Epub 2016 Jan 21.
8
Improving recombinant Rubisco biogenesis, plant photosynthesis and growth by coexpressing its ancillary RAF1 chaperone.
Proc Natl Acad Sci U S A. 2015 Mar 17;112(11):3564-9. doi: 10.1073/pnas.1420536112. Epub 2015 Mar 2.
9
Efficient solar-to-fuels production from a hybrid microbial-water-splitting catalyst system.
Proc Natl Acad Sci U S A. 2015 Feb 24;112(8):2337-42. doi: 10.1073/pnas.1424872112. Epub 2015 Feb 9.
10
Opposing effects of folding and assembly chaperones on evolvability of Rubisco.
Nat Chem Biol. 2015 Feb;11(2):148-55. doi: 10.1038/nchembio.1715. Epub 2015 Jan 5.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验