Suppr超能文献

酵母中的碱金属阳离子运输和稳态。

Alkali metal cation transport and homeostasis in yeasts.

机构信息

Departament de Bioquímica i Biologia Molecular, Ed. V, Universitat Autònoma de Barcelona, Bellaterra 08193, Barcelona, Spain.

出版信息

Microbiol Mol Biol Rev. 2010 Mar;74(1):95-120. doi: 10.1128/MMBR.00042-09.

Abstract

The maintenance of appropriate intracellular concentrations of alkali metal cations, principally K(+) and Na(+), is of utmost importance for living cells, since they determine cell volume, intracellular pH, and potential across the plasma membrane, among other important cellular parameters. Yeasts have developed a number of strategies to adapt to large variations in the concentrations of these cations in the environment, basically by controlling transport processes. Plasma membrane high-affinity K(+) transporters allow intracellular accumulation of this cation even when it is scarce in the environment. Exposure to high concentrations of Na(+) can be tolerated due to the existence of an Na(+), K(+)-ATPase and an Na(+), K(+)/H(+)-antiporter, which contribute to the potassium balance as well. Cations can also be sequestered through various antiporters into intracellular organelles, such as the vacuole. Although some uncertainties still persist, the nature of the major structural components responsible for alkali metal cation fluxes across yeast membranes has been defined within the last 20 years. In contrast, the regulatory components and their interactions are, in many cases, still unclear. Conserved signaling pathways (e.g., calcineurin and HOG) are known to participate in the regulation of influx and efflux processes at the plasma membrane level, even though the molecular details are obscure. Similarly, very little is known about the regulation of organellar transport and homeostasis of alkali metal cations. The aim of this review is to provide a comprehensive and up-to-date vision of the mechanisms responsible for alkali metal cation transport and their regulation in the model yeast Saccharomyces cerevisiae and to establish, when possible, comparisons with other yeasts and higher plants.

摘要

维持适当的细胞内碱金属阳离子浓度,主要是 K(+) 和 Na(+),对活细胞至关重要,因为它们决定细胞体积、细胞内 pH 值和质膜两侧的电势,以及其他重要的细胞参数。酵母已经发展出许多策略来适应环境中这些阳离子浓度的巨大变化,基本上是通过控制运输过程。质膜高亲和力 K(+)转运体允许细胞内积累这种阳离子,即使环境中缺乏 K(+)。由于存在 Na(+),K(+)-ATP 酶和 Na(+),K(+)/H(+)-反向转运体,酵母可以耐受高浓度的 Na(+),它们有助于钾的平衡。阳离子也可以通过各种反向转运体被隔离到细胞内的细胞器中,如液泡。尽管仍然存在一些不确定性,但在过去的 20 年中,已经确定了负责酵母膜中碱金属阳离子通量的主要结构成分的性质。相比之下,在许多情况下,调节成分及其相互作用仍然不清楚。保守的信号通路(如钙调神经磷酸酶和 HOG)已知参与调节质膜水平的流入和流出过程,尽管分子细节尚不清楚。同样,对于细胞器运输和碱金属阳离子的稳态的调节知之甚少。本综述的目的是提供一个关于负责碱金属阳离子运输的机制的全面和最新的视角,并在可能的情况下与其他酵母和高等植物进行比较。

相似文献

1
Alkali metal cation transport and homeostasis in yeasts.酵母中的碱金属阳离子运输和稳态。
Microbiol Mol Biol Rev. 2010 Mar;74(1):95-120. doi: 10.1128/MMBR.00042-09.

引用本文的文献

1
Early responses to hyperosmotic stress at the yeast vacuole.酵母液泡对高渗胁迫的早期反应。
bioRxiv. 2025 Aug 13:2025.08.11.669746. doi: 10.1101/2025.08.11.669746.
4
Improved Skill of Rotaxanes to Recognize Cations: A Theoretical Perspective.轮烷识别阳离子的改进技巧:理论视角
ACS Phys Chem Au. 2025 Jan 6;5(2):183-194. doi: 10.1021/acsphyschemau.4c00090. eCollection 2025 Mar 26.
10
Exit, O Sodium!钠,退场!
Function (Oxf). 2024 Apr 8;5(3):zqae018. doi: 10.1093/function/zqae018. eCollection 2024.

本文引用的文献

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验