Suppr超能文献

次级代谢和发育是由 LlmF 控制 Aspergillus nidulans 中 VeA 的亚细胞定位介导的。

Secondary metabolism and development is mediated by LlmF control of VeA subcellular localization in Aspergillus nidulans.

机构信息

Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, Wisconsin, United States of America.

出版信息

PLoS Genet. 2013;9(1):e1003193. doi: 10.1371/journal.pgen.1003193. Epub 2013 Jan 17.

Abstract

Secondary metabolism and development are linked in Aspergillus through the conserved regulatory velvet complex composed of VeA, VelB, and LaeA. The founding member of the velvet complex, VeA, shuttles between the cytoplasm and nucleus in response to alterations in light. Here we describe a new interaction partner of VeA identified through a reverse genetics screen looking for LaeA-like methyltransferases in Aspergillus nidulans. One of the putative LaeA-like methyltransferases identified, LlmF, is a negative regulator of sterigmatocystin production and sexual development. LlmF interacts directly with VeA and the repressive function of LlmF is mediated by influencing the localization of VeA, as over-expression of llmF decreases the nuclear to cytoplasmic ratio of VeA while deletion of llmF results in an increased nuclear accumulation of VeA. We show that the methyltransferase domain of LlmF is required for function; however, LlmF does not directly methylate VeA in vitro. This study identifies a new interaction partner for VeA and highlights the importance of cellular compartmentalization of VeA for regulation of development and secondary metabolism.

摘要

次级代谢和发育在曲霉中通过保守的调节 velvet 复合物联系在一起,该复合物由 VeA、VelB 和 LaeA 组成。velvet 复合物的创始成员 VeA 响应光的变化在细胞质和核之间穿梭。在这里,我们通过反向遗传学筛选描述了一个通过反向遗传学筛选鉴定的 VeA 的新相互作用伙伴,该筛选旨在寻找 Aspergillus nidulans 中的 LaeA 样甲基转移酶。鉴定出的一个假定的 LaeA 样甲基转移酶,LlmF,是麦角甾酮产生和有性发育的负调节剂。LlmF 与 VeA 直接相互作用,LlmF 的抑制功能是通过影响 VeA 的定位来介导的,因为过量表达 llmF 会降低 VeA 的核质比,而删除 llmF 会导致 VeA 在核内积累增加。我们表明,LlmF 的甲基转移酶结构域是其功能所必需的;然而,LlmF 不能在体外直接甲基化 VeA。这项研究鉴定了 VeA 的一个新的相互作用伙伴,并强调了 VeA 的细胞区室化对于发育和次生代谢调节的重要性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3d2a/3547832/7ff537abb4bf/pgen.1003193.g001.jpg

相似文献

1
Secondary metabolism and development is mediated by LlmF control of VeA subcellular localization in Aspergillus nidulans.
PLoS Genet. 2013;9(1):e1003193. doi: 10.1371/journal.pgen.1003193. Epub 2013 Jan 17.
2
VelB/VeA/LaeA complex coordinates light signal with fungal development and secondary metabolism.
Science. 2008 Jun 13;320(5882):1504-6. doi: 10.1126/science.1155888.
4
A phosphorylation code of the Aspergillus nidulans global regulator VelvetA (VeA) determines specific functions.
Mol Microbiol. 2016 Mar;99(5):909-24. doi: 10.1111/mmi.13275. Epub 2015 Dec 9.
5
Aspergillus flavus VelB acts distinctly from VeA in conidiation and may coordinate with FluG to modulate sclerotial production.
Fungal Genet Biol. 2013 Sep-Oct;58-59:71-9. doi: 10.1016/j.fgb.2013.08.009. Epub 2013 Aug 29.
6
Control of Development, Secondary Metabolism and Light-Dependent Carotenoid Biosynthesis by the Velvet Complex of .
Genetics. 2019 Jul;212(3):691-710. doi: 10.1534/genetics.119.302277. Epub 2019 May 8.
7
Unraveling the Gene Regulatory Networks of the Global Regulators VeA and LaeA in Aspergillus nidulans.
Microbiol Spectr. 2023 Mar 15;11(2):e0016623. doi: 10.1128/spectrum.00166-23.
8
One Juliet and four Romeos: VeA and its methyltransferases.
Front Microbiol. 2015 Jan 20;6:1. doi: 10.3389/fmicb.2015.00001. eCollection 2015.
9
Aspergillus nidulans VeA subcellular localization is dependent on the importin alpha carrier and on light.
Mol Microbiol. 2007 Jan;63(1):242-55. doi: 10.1111/j.1365-2958.2006.05506.x. Epub 2006 Dec 5.

引用本文的文献

1
Engineering of Global Transcriptional Regulators (GTRs) in for Natural Product Discovery.
J Fungi (Basel). 2025 Jun 12;11(6):449. doi: 10.3390/jof11060449.
3
Beyond morphogenesis and secondary metabolism: function of Velvet proteins and LaeA in fungal pathogenesis.
Appl Environ Microbiol. 2024 Oct 23;90(10):e0081924. doi: 10.1128/aem.00819-24. Epub 2024 Sep 4.
6
Light regulation of secondary metabolism in fungi.
J Biol Eng. 2023 Aug 31;17(1):57. doi: 10.1186/s13036-023-00374-4.
7
Molecular regulation of fungal secondary metabolism.
World J Microbiol Biotechnol. 2023 May 20;39(8):204. doi: 10.1007/s11274-023-03649-6.
8
The putative methyltransferase LaeA regulates mycelium growth and cellulase production in Myceliophthora thermophila.
Biotechnol Biofuels Bioprod. 2023 Apr 3;16(1):58. doi: 10.1186/s13068-023-02313-3.
9
Urease of Aspergillus fumigatus Is Required for Survival in Macrophages and Virulence.
Microbiol Spectr. 2023 Mar 14;11(2):e0350822. doi: 10.1128/spectrum.03508-22.
10
The Role of Chromatin and Transcriptional Control in the Formation of Sexual Fruiting Bodies in Fungi.
Microbiol Mol Biol Rev. 2022 Dec 21;86(4):e0010422. doi: 10.1128/mmbr.00104-22. Epub 2022 Nov 21.

本文引用的文献

1
The Aspergillus nidulans MAPK module AnSte11-Ste50-Ste7-Fus3 controls development and secondary metabolism.
PLoS Genet. 2012;8(7):e1002816. doi: 10.1371/journal.pgen.1002816. Epub 2012 Jul 19.
2
FgVELB is associated with vegetative differentiation, secondary metabolism and virulence in Fusarium graminearum.
Fungal Genet Biol. 2012 Aug;49(8):653-62. doi: 10.1016/j.fgb.2012.06.005. Epub 2012 Jun 17.
3
FgVelB globally regulates sexual reproduction, mycotoxin production and pathogenicity in the cereal pathogen Fusarium graminearum.
Microbiology (Reading). 2012 Jul;158(Pt 7):1723-1733. doi: 10.1099/mic.0.059188-0. Epub 2012 Apr 19.
7
The velvet gene, FgVe1, affects fungal development and positively regulates trichothecene biosynthesis and pathogenicity in Fusarium graminearum.
Mol Plant Pathol. 2012 May;13(4):363-74. doi: 10.1111/j.1364-3703.2011.00755.x. Epub 2011 Oct 20.
8
Coordination of secondary metabolism and development in fungi: the velvet family of regulatory proteins.
FEMS Microbiol Rev. 2012 Jan;36(1):1-24. doi: 10.1111/j.1574-6976.2011.00285.x. Epub 2011 Jul 13.
9
Phosphorylation meets nuclear import: a review.
Cell Commun Signal. 2010 Dec 23;8:32. doi: 10.1186/1478-811X-8-32.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验