Suppr超能文献

velvet 复合体调控发育、次生代谢和光依赖类胡萝卜素生物合成

Control of Development, Secondary Metabolism and Light-Dependent Carotenoid Biosynthesis by the Velvet Complex of .

机构信息

Department of Biology, Maynooth University, Co. Kildare, W23 F2H6, Ireland.

Institute for Biology II, Molecular Plant Physiology, Albert-Ludwigs-University 79104 Freiburg, Germany.

出版信息

Genetics. 2019 Jul;212(3):691-710. doi: 10.1534/genetics.119.302277. Epub 2019 May 8.

Abstract

is an established reference organism to investigate carotene biosynthesis and light regulation. However, there is little evidence of its capacity to produce secondary metabolites. Here, we report the role of the fungal-specific regulatory velvet complexes in development and secondary metabolism (SM) in Three velvet proteins VE-1, VE-2, VOS-1, and a putative methyltransferase LAE-1 show light-independent nucleocytoplasmic localization. Two distinct velvet complexes, a heterotrimeric VE-1/VE-2/LAE-1 and a heterodimeric VE-2/VOS-1 are found The heterotrimer-complex, which positively regulates sexual development and represses asexual sporulation, suppresses siderophore coprogen production under iron starvation conditions. The VE-1/VE-2 heterodimer controls carotene production. VE-1 regulates the expression of >15% of the whole genome, comprising mainly regulatory and developmental features. We also studied intergenera functions of the velvet complex through complementation of , , , mutants with their orthologs , , , and , respectively. Expression of VE-1 and VE-2 in successfully substitutes the developmental and SM functions of VeA and VelB by forming two functional chimeric velvet complexes , VelB/VE-1/LaeA and VE-2/VeA/LaeA, respectively. Reciprocally, expression of restores the phenotypes of the mutant. All velvet proteins heterologously expressed in are localized to the nuclear fraction independent of light. These data highlight the conservation of the complex formation in and However, they also underline the intergenera similarities and differences of velvet roles according to different life styles, niches and ontogenetic processes.

摘要

是研究类胡萝卜素生物合成和光调控的既定参考生物。然而,关于其产生次生代谢物的能力的证据很少。在这里,我们报告真菌特异性调节天鹅绒复合物在发育和次生代谢(SM)中的作用在 中,三种天鹅绒蛋白 VE-1、VE-2 和 VOS-1 以及一个假定的甲基转移酶 LAE-1 显示出与光无关的核质定位。发现了两个不同的天鹅绒复合物,一个异三聚体 VE-1/VE-2/LAE-1 和一个异二聚体 VE-2/VOS-1。异三聚体复合物正向调节有性发育并抑制无性孢子形成,在缺铁条件下抑制铁载体 coprogen 的产生。VE-1/VE-2 异二聚体控制类胡萝卜素的产生。VE-1 调节整个基因组的 >15%的表达,主要包括调节和发育特征。我们还通过分别用其同源物 、 、 、 互补 、 、 、 突变体来研究天鹅绒复合物的种间功能。VE-1 和 VE-2 在 中的表达成功地通过形成两种功能性嵌合天鹅绒复合物 、VelB/VE-1/LaeA 和 VE-2/VeA/LaeA 来替代 VeA 和 VelB 的发育和 SM 功能。相反, 的表达恢复了 突变体的表型。所有在 中异源表达的 天鹅绒蛋白都独立于光定位到核部分。这些数据突出了 和 中复合物形成的保守性。然而,它们也强调了天鹅绒作用的种间相似性和差异性,这取决于不同的生活方式、生态位和个体发生过程。

相似文献

2
VE-1 regulation of MAPK signaling controls sexual development in .VE-1 调节 MAPK 信号转导控制. 的性发育。
mBio. 2024 Oct 16;15(10):e0226424. doi: 10.1128/mbio.02264-24. Epub 2024 Sep 16.
3
Neurospora crassa ve-1 affects asexual conidiation.粗糙脉孢菌ve-1影响无性分生孢子形成。
Fungal Genet Biol. 2008 Feb;45(2):127-38. doi: 10.1016/j.fgb.2007.06.001. Epub 2007 Jun 14.

引用本文的文献

5
Phylogenomics analysis of velvet regulators in the fungal kingdom.真菌王国绒泡菌调控因子的系统发生基因组学分析。
Microbiol Spectr. 2024 Feb 6;12(2):e0371723. doi: 10.1128/spectrum.03717-23. Epub 2024 Jan 5.
9
Light regulation of secondary metabolism in fungi.真菌中次生代谢的光调节
J Biol Eng. 2023 Aug 31;17(1):57. doi: 10.1186/s13036-023-00374-4.
10
Photoreceptors.光感受器
J Fungi (Basel). 2023 Mar 4;9(3):319. doi: 10.3390/jof9030319.

本文引用的文献

1
Evolution of asexual and sexual reproduction in the aspergilli.曲霉属中无性繁殖和有性繁殖的进化
Stud Mycol. 2018 Sep;91:37-59. doi: 10.1016/j.simyco.2018.10.002. Epub 2018 Oct 11.
7
The Complexity of Fungal Vision.真菌视觉的复杂性。
Microbiol Spectr. 2016 Dec;4(6). doi: 10.1128/microbiolspec.FUNK-0020-2016.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验