Department of Molecular and Cellular Biology, University of California Davis, Davis, California, United States of America.
PLoS Genet. 2013;9(1):e1003197. doi: 10.1371/journal.pgen.1003197. Epub 2013 Jan 17.
Homolog pairing and crossing over during meiosis I prophase is required for accurate chromosome segregation to form euploid gametes. The repair of Spo11-induced double-strand breaks (DSB) using a homologous chromosome template is a major driver of pairing in many species, including fungi, plants, and mammals. Inappropriate pairing and crossing over at ectopic loci can lead to chromosome rearrangements and aneuploidy. How (or if) inappropriate ectopic interactions are disrupted in favor of allelic interactions is not clear. Here we used an in vivo "collision" assay in budding yeast to test the contributions of cohesion and the organization and motion of chromosomes in the nucleus on promoting or antagonizing interactions between allelic and ectopic loci at interstitial chromosome sites. We found that deletion of the cohesin subunit Rec8, but not other chromosome axis proteins (e.g. Red1, Hop1, or Mek1), caused an increase in homolog-nonspecific chromosome interaction, even in the absence of Spo11. This effect was partially suppressed by expression of the mitotic cohesin paralog Scc1/Mdc1, implicating Rec8's role in cohesion rather than axis integrity in preventing nonspecific chromosome interactions. Disruption of telomere-led motion by treating cells with the actin polymerization inhibitor Latrunculin B (Lat B) elevated nonspecific collisions in rec8Δ spo11Δ. Next, using a visual homolog-pairing assay, we found that the delay in homolog pairing in mutants defective for telomere-led chromosome motion (ndj1Δ or csm4Δ) is enhanced in Lat B-treated cells, implicating actin in more than one process promoting homolog juxtaposition. We suggest that multiple, independent contributions of actin, cohesin, and telomere function are integrated to promote stable homolog-specific interactions and to destabilize weak nonspecific interactions by modulating the elastic spring-like properties of chromosomes.
减数分裂 I 前期同源配对和交叉互换是形成整倍体配子的准确染色体分离所必需的。在许多物种中,包括真菌、植物和哺乳动物,使用同源染色体模板修复 Spo11 诱导的双链断裂 (DSB) 是配对的主要驱动因素。在异位位点的不适当配对和交叉互换会导致染色体重排和非整倍体。在有利于等位基因相互作用的情况下,如何(或是否)破坏不适当的异位相互作用尚不清楚。在这里,我们在芽殖酵母中使用体内“碰撞”测定法来测试凝聚和染色体在核内的组织和运动对促进或拮抗等位基因和异位基因在间位染色体位点上的相互作用的贡献。我们发现,缺失凝聚亚基 Rec8,但不是其他染色体轴蛋白(例如 Red1、Hop1 或 Mek1),会导致同源非特异性染色体相互作用增加,即使在没有 Spo11 的情况下也是如此。这种效应部分被有丝分裂凝聚体同源物 Scc1/Mdc1 的表达所抑制,这表明 Rec8 在防止非特异性染色体相互作用方面的作用是在凝聚而不是轴完整性。通过用肌动蛋白聚合抑制剂 Latrunculin B(Lat B)处理细胞来破坏端粒引导的运动,会导致 rec8Δ spo11Δ 中非特异性碰撞增加。接下来,使用可视化同源配对测定法,我们发现,在端粒引导的染色体运动缺陷突变体(ndj1Δ 或 csm4Δ)中,同源配对的延迟在 Lat B 处理的细胞中增强,这表明肌动蛋白在促进同源并列的多个过程中起作用。我们认为,肌动蛋白、凝聚和端粒功能的多个独立贡献被整合在一起,以促进稳定的同源特异性相互作用,并通过调节染色体的弹性弹簧样特性来破坏弱的非特异性相互作用。