Suppr超能文献

模拟减数分裂染色体配对的细胞生物学特征以研究连锁的解开。

Modeling cell biological features of meiotic chromosome pairing to study interlock resolution.

机构信息

Department of Obstetrics, Gynecology and Reproductive Sciences and Center of Reproductive Sciences, University of California, San Francisco, California, United States of America.

Department of Biochemistry and Biophysics, University of California, San Francisco, California, United States of America.

出版信息

PLoS Comput Biol. 2022 Jun 13;18(6):e1010252. doi: 10.1371/journal.pcbi.1010252. eCollection 2022 Jun.

Abstract

During meiosis, homologous chromosomes become associated side by side in a process known as homologous chromosome pairing. Pairing requires long range chromosome motion through a nucleus that is full of other chromosomes. It remains unclear how the cell manages to align each pair of chromosomes quickly while mitigating and resolving interlocks. Here, we use a coarse-grained molecular dynamics model to investigate how specific features of meiosis, including motor-driven telomere motion, nuclear envelope interactions, and increased nuclear size, affect the rate of pairing and the mitigation/resolution of interlocks. By creating in silico versions of three yeast strains and comparing the results of our model to experimental data, we find that a more distributed placement of pairing sites along the chromosome is necessary to replicate experimental findings. Active motion of the telomeric ends speeds up pairing only if binding sites are spread along the chromosome length. Adding a meiotic bouquet significantly speeds up pairing but does not significantly change the number of interlocks. An increase in nuclear size slows down pairing while greatly reducing the number of interlocks. Interestingly, active forces increase the number of interlocks, which raises the question: How do these interlocks resolve? Our model gives us detailed movies of interlock resolution events which we then analyze to build a step-by-step recipe for interlock resolution. In our model, interlocks must first translocate to the ends, where they are held in a quasi-stable state by a large number of paired sites on one side. To completely resolve an interlock, the telomeres of the involved chromosomes must come in close proximity so that the cooperativity of pairing coupled with random motion causes the telomeres to unwind. Together our results indicate that computational modeling of homolog pairing provides insight into the specific cell biological changes that occur during meiosis.

摘要

在减数分裂过程中,同源染色体通过同源染色体配对过程并排排列。配对需要通过充满其他染色体的细胞核进行长距离染色体运动。目前尚不清楚细胞如何在快速对齐每对染色体的同时减轻和解决连锁。在这里,我们使用粗粒度分子动力学模型来研究减数分裂的特定特征,包括由马达驱动的端粒运动、核膜相互作用和增加的核大小,如何影响配对的速度以及连锁的减轻/解决。通过创建三个酵母菌株的计算机模拟版本并将我们模型的结果与实验数据进行比较,我们发现沿着染色体更均匀地放置配对位点对于复制实验结果是必要的。只有当结合位点沿染色体长度分布时,端粒末端的主动运动才能加快配对速度。添加减数分裂花束可大大加快配对速度,但不会显著改变连锁的数量。核大小的增加会减缓配对速度,同时大大减少连锁的数量。有趣的是,主动力增加了连锁的数量,这就提出了一个问题:这些连锁是如何解决的?我们的模型为我们提供了连锁解决事件的详细电影,然后我们对其进行分析,以建立连锁解决的分步食谱。在我们的模型中,连锁首先必须易位到末端,在末端,一侧大量配对的位点将它们保持在准稳定状态。要完全解决连锁,参与染色体的端粒必须非常接近,以便配对的协同作用加上随机运动导致端粒解开。我们的结果表明,同源配对的计算建模为减数分裂过程中发生的特定细胞生物学变化提供了深入了解。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a8c0/9232156/761a2446a6e7/pcbi.1010252.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验