Suppr超能文献

人体运动皮层的体感反应。

Somatosensory responses in a human motor cortex.

机构信息

Department of Neuroscience, Brown University, Providence, Rhode Island, USA.

出版信息

J Neurophysiol. 2013 Apr;109(8):2192-204. doi: 10.1152/jn.00368.2012. Epub 2013 Jan 23.

Abstract

Somatic sensory signals provide a major source of feedback to motor cortex. Changes in somatosensory systems after stroke or injury could profoundly influence brain computer interfaces (BCI) being developed to create new output signals from motor cortex activity patterns. We had the unique opportunity to study the responses of hand/arm area neurons in primary motor cortex to passive joint manipulation in a person with a long-standing brain stem stroke but intact sensory pathways. Neurons responded to passive manipulation of the contralateral shoulder, elbow, or wrist as predicted from prior studies of intact primates. Thus fundamental properties and organization were preserved despite arm/hand paralysis and damage to cortical outputs. The same neurons were engaged by attempted arm actions. These results indicate that intact sensory pathways retain the potential to influence primary motor cortex firing rates years after cortical outputs are interrupted and may contribute to online decoding of motor intentions for BCI applications.

摘要

躯体感觉信号为运动皮层提供了主要的反馈来源。中风或损伤后躯体感觉系统的变化可能会极大地影响正在开发的脑机接口(BCI),这些接口旨在从运动皮层活动模式中创建新的输出信号。我们有机会研究一位长期脑干中风但感觉通路完整的患者在接受被动关节操纵时,初级运动皮层手部/手臂区域神经元的反应。神经元对来自于完整灵长类动物的先前研究预测的对侧肩部、肘部或手腕的被动操纵做出反应。因此,尽管手臂/手部瘫痪和皮质输出损伤,基本特性和组织仍得以保留。相同的神经元也会被尝试的手臂动作所激活。这些结果表明,即使在皮质输出中断多年后,完整的感觉通路仍有可能影响初级运动皮层的放电率,并可能有助于在线解码用于 BCI 应用的运动意图。

相似文献

1
Somatosensory responses in a human motor cortex.
J Neurophysiol. 2013 Apr;109(8):2192-204. doi: 10.1152/jn.00368.2012. Epub 2013 Jan 23.
3
Congenital mirror movements. Abnormal organization of motor pathways in two patients.
Brain. 1991 Feb;114 ( Pt 1B):381-403. doi: 10.1093/brain/114.1.381.
4
Cortical contributions to sensory gating in the ipsilateral somatosensory cortex during voluntary activity.
J Physiol. 2017 Sep 15;595(18):6203-6217. doi: 10.1113/JP274504. Epub 2017 Aug 18.
8
Continuous neuronal ensemble control of simulated arm reaching by a human with tetraplegia.
J Neural Eng. 2011 Jun;8(3):034003. doi: 10.1088/1741-2560/8/3/034003. Epub 2011 May 5.
9
Congenital hemiparesis: different functional reorganization of somatosensory and motor pathways.
Clin Neurophysiol. 2002 Aug;113(8):1273-8. doi: 10.1016/s1388-2457(02)00150-5.

引用本文的文献

1
Cortical processing during robot and functional electrical stimulation.
Front Syst Neurosci. 2023 Mar 21;17:1045396. doi: 10.3389/fnsys.2023.1045396. eCollection 2023.
2
Bayesian prediction of psychophysical detection responses from spike activity in the rat sensorimotor cortex.
J Comput Neurosci. 2023 May;51(2):207-222. doi: 10.1007/s10827-023-00844-0. Epub 2023 Jan 25.
4
Corticospinal excitability of tibialis anterior and soleus differs during passive ankle movement.
Exp Brain Res. 2019 Sep;237(9):2239-2254. doi: 10.1007/s00221-019-05590-3. Epub 2019 Jun 26.
5
The critical stability task: quantifying sensory-motor control during ongoing movement in nonhuman primates.
J Neurophysiol. 2018 Nov 1;120(5):2164-2181. doi: 10.1152/jn.00300.2017. Epub 2018 Jun 27.
6
Neurophysiology and neural engineering: a review.
J Neurophysiol. 2017 Aug 1;118(2):1292-1309. doi: 10.1152/jn.00149.2017. Epub 2017 May 31.
7
Intracortical Brain-Machine Interfaces Advance Sensorimotor Neuroscience.
Front Neurosci. 2016 Jun 28;10:291. doi: 10.3389/fnins.2016.00291. eCollection 2016.
8
Restoring cortical control of functional movement in a human with quadriplegia.
Nature. 2016 May 12;533(7602):247-50. doi: 10.1038/nature17435. Epub 2016 Apr 13.
9
Neuroplasticity subserving the operation of brain-machine interfaces.
Neurobiol Dis. 2015 Nov;83:161-71. doi: 10.1016/j.nbd.2015.05.001. Epub 2015 May 9.
10
Multimodal Interactions between Proprioceptive and Cutaneous Signals in Primary Somatosensory Cortex.
Neuron. 2015 Apr 22;86(2):555-66. doi: 10.1016/j.neuron.2015.03.020. Epub 2015 Apr 9.

本文引用的文献

1
Reach and grasp by people with tetraplegia using a neurally controlled robotic arm.
Nature. 2012 May 16;485(7398):372-5. doi: 10.1038/nature11076.
2
Sensing with the motor cortex.
Neuron. 2011 Nov 3;72(3):477-87. doi: 10.1016/j.neuron.2011.10.020.
3
Primary motor cortex underlies multi-joint integration for fast feedback control.
Nature. 2011 Sep 28;478(7369):387-90. doi: 10.1038/nature10436.
4
Continuous neuronal ensemble control of simulated arm reaching by a human with tetraplegia.
J Neural Eng. 2011 Jun;8(3):034003. doi: 10.1088/1741-2560/8/3/034003. Epub 2011 May 5.
6
Point-and-click cursor control with an intracortical neural interface system by humans with tetraplegia.
IEEE Trans Neural Syst Rehabil Eng. 2011 Apr;19(2):193-203. doi: 10.1109/TNSRE.2011.2107750. Epub 2011 Jan 28.
7
Incorporating feedback from multiple sensory modalities enhances brain-machine interface control.
J Neurosci. 2010 Dec 15;30(50):16777-87. doi: 10.1523/JNEUROSCI.3967-10.2010.
8
Decoding complete reach and grasp actions from local primary motor cortex populations.
J Neurosci. 2010 Jul 21;30(29):9659-69. doi: 10.1523/JNEUROSCI.5443-09.2010.
9
Neural control of computer cursor velocity by decoding motor cortical spiking activity in humans with tetraplegia.
J Neural Eng. 2008 Dec;5(4):455-76. doi: 10.1088/1741-2560/5/4/010. Epub 2008 Nov 18.
10
Comparison of neural responses in primary motor cortex to transient and continuous loads during posture.
J Neurophysiol. 2009 Jan;101(1):150-63. doi: 10.1152/jn.90230.2008. Epub 2008 Nov 12.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验