Bolterauer H, Limbach H J, Tuszyński J A
Institut für Theoretische Physik, Justus-Liebig Universität Gießen, Gießen, Germany.
J Biol Phys. 1999 Mar;25(1):1-22. doi: 10.1023/A:1005159215657.
In this paper we present solutions of the master equations for the microtubule length and show that the local probability for rescues or catastrophes can lead to bell-shaped length histograms. Conversely, as already known, non-local probabilities for these events result in exponential length histograms. We also derive master equations for a stabilizing cap and obtain a new boundary condition which provides an explanation of the results obtained in dilution and cutting experiments.
在本文中,我们给出了微管长度主方程的解,并表明救援或灾变的局部概率可导致钟形长度直方图。相反,如已知的那样,这些事件的非局部概率会导致指数长度直方图。我们还推导了稳定帽的主方程,并获得了一个新的边界条件,该条件解释了在稀释和切割实验中得到的结果。